JRuby Cookbook, 1st Edition
by Justin Edelson; Henry Liu

Publisher: O'Reilly Media, Inc.

Pub Date: November 18, 2008
Print ISBN-13: 978-0-596-51980-3
Pages: 250

Overview

If you're interested in JRuby, you probably don't need a turorial on Ruby,
Rails, or Java -- you just need to know how to get things done. This
Cookbook offers practical solutions for using the Java implementation of
the Ruby language, with targeted recipes for deploying Rails web
applications on Java servers, integrating JRuby code with Java
technologies, developing JRuby desktop applications with Java toolkits,
and more. Using numerous reusable code samples, JRuby

Cookbook shows you how to:

e Install and update JRuby on Windows, Mac OS X, and Linux, and
IDEs such as NetBeans and Eclipse

o Package and deploy Rails apps on Java Servlet containers and Java
EE application servers, including JBoss, Tomcat, and GlassFish

o Integrate Ruby and Rails applications with popular Java EE
technologies such as JMS, JMX, JPA, Spring, and Hibernate

o Develop desktop and client applications with cross-platform Java Ul
technologies and toolkits such as Swing, SWT, and Java 2D

e« Maximize the flexibility of your testing and build environment, using
both existing Java-based tools such as Ant and Maven and newer
Ruby-based tools such as Rake, Raven, and Buildr

The JRuby interpreter combines Ruby's simplicity and ease of use with
Java's extensive libraries and technologies, a potent blend that opens new
possibilities for Ruby, Rails, and Java. This Cookbook helps you take full
advantage of JRuby's potential. "The JRuby Cookbook is an excellent book
for any polyglot who is trying to bridge the gap between Java and Ruby.

It provides solutions to specific problems developers face in both their
development and testing environments, along with the applications
they're building.”" -- Bob McWhirter, Research & Prototyping, Red Hat
Middleware

Editorial Reviews

Product Description

If you're interested in JRuby, you probably don't need a turorial on Ruby,
Rails, or Java -- you just need to know how to get things done. This
Cookbook offers practical solutions for using the Java implementation of the
Ruby language, with targeted recipes for deploying Rails web applications on
Java servers, integrating JRuby code with Java technologies, developing
JRuby desktop applications with Java toolkits, and more. Using numerous
reusable code samples, JRuby Cookbook shows you how to: Install and
update JRuby on Windows, Mac OS X, and Linux, and IDEs such as NetBeans
and Eclipse Package and deploy Rails apps on Java Servlet containers and
Java EE application servers, including JBoss, Tomcat, and GlassFish Integrate
Ruby and Rails applications with popular Java EE technologies such as JMS,
JMX, JPA, Spring, and Hibernate Develop desktop and client applications with
cross-platform Java Ul technologies and toolkits such as Swing, SWT, and
Java 2D Maximize the flexibility of your testing and build environment, using
both existing Java-based tools such as Ant and Maven and newer Ruby-based
tools such as Rake, Raven, and Buildr

The JRuby interpreter combines Ruby's simplicity and ease of use with Java's
extensive libraries and technologies, a potent blend that opens new
possibilities for Ruby, Rails, and Java. This Cookbook helps you take full
advantage of JRuby's potential. "The JRuby Cookbook is an excellent book for
any polyglot who is trying to bridge the gap between Java and Ruby. It
provides solutions to specific problems developers face in both their
development and testing environments, along with the applications they're
building." -- Bob McWhirter, Research &Prototyping, Red Hat Middleware

Copyright

Copyright © 2009, Justin Edelson and Henry Liu. All rights reserved.
Printed in the United States of America.

Published by , , , .

O'Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938

or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sarah Schneider
Editor: Colleen Gorman

O'Reilly and the O'Reilly logo are registered trademarks of O'Reilly Media,
Inc. JRuby Cookbook, the image of an African civet, and related trade
dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
the publisher and authors assume no responsibility for errors or
omissions, or for damages resulting from the use of the information
contained herein.

Preface

JRuby is just Ruby taking advantage of Java's VM; takUi[dnClg the suck
out of Java and putting some extra aweldsOolOmUe into Ruby.

—Charles Nutter, JRuby project lead
Twitter, August 7, 2008

And with that quote, Charles Nutter summarizes the two forces that have
recently brought attention to the JRuby project: the recognition that Java
provides a powerful platform that can be used by languages other than
Java, and the increase in interest in the Ruby programming language. In
the recipes ahead, we will explore a wide variety of usage scenarios for
JRuby. In Charles's terms, some recipes are about taking the suck out of
Java, some are about putting some extra awesome into Ruby, and some
are about both.

P.1. Audience

To fully leverage JRuby, you must be able to move freely between the
Java and Ruby domains. In writing the JRuby Cookbook, we had in mind a
reader with some understanding of both languages, possibly with a better
understanding of one or the other. As a result, you won't find a lot of
basic introductory material, save for the first chapter where we illustrate
the areas where Ruby and Java are similar as well as where they differ.

Our overall approach is that the purpose of the recipes in this book is not
to educate you on some preexisting Java or Ruby capability, but instead
to explain how to use JRuby within the context of, or as an enhancement
to, these existing capabilities. For example, the recipes in the JRuby on
Rails chapter are written for someone who has already created a
(working) Rails application.

P.2. Organization

Chapter 1

This chapter starts off with a brief introduction to JRuby before
stepping through a number of basic usages of JRuby, including
how to use the RubyGems package management system and
how to interact with Java code from Ruby code. The package
concludes with a number of recipes about setting up various

integrated development environments (IDEs) for working with
JRuby.

Chapter 2

This chapter is focused on a variety of scenarios for deploying
Ruby on Rails applications using JRuby.

Chapter 3

This chapter starts with several recipes about invoking Ruby
code from Java code and then continues into recipes describing
the usage of popular Java libraries such as Java Native Access (
JNA) and Jakarta Commons Logging from Ruby.

Chapter 4

The recipes in this chapter are all about using JRuby with
enterprise Java frameworks such as JMS, JNDI, EJB, Spring, and
Hibernate.

Chapter 5

This chapter describes a number of JRuby-based frameworks
that facilitate the creation of user interfaces. It also includes
recipes about image manipulation, applets, and desktop
integration.

Chapter 6

The recipes in this chapter are focused on using JRuby to
enhance the build process of your Java project. Ant and Maven,
the two most popular Java-based build tools, both have several
different ways that JRuby can be used. There are also recipes
about the JRuby-specific build tools Raven and Buildr.

Chapter 7

The focus of this chapter is on JtestR, a package that includes

JRuby and a variety of popular Ruby testing tools. Through the
recipes in this chapter, you will learn how to write Ruby-based
tests of Java code.

Chapter 8

This final chapter includes a few recipes about effectively
participating in the JRuby community.

P.3. Conventions Used in This Book

This book uses the following typographic conventions:

Italic

Used for example URLs, names of directories and files, options,
and occasionally for emphasis.

Constant width
Used for program listings. Also used within paragraphs to refer

to program elements such as namespaces, classes, and method
names.

Constant width italic

Indicates text that should be replaced with user-supplied values.
NOTE

This icon indicates a tip, suggestion, or general note.

- This icon indicates a warning or caution.

P.4. Using Code Examples

This book is here to help you get your job done. In general, you may use
the code in this book in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant
portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O'Reilly books does require
permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of
example code from this book into your product's

documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: "JRuby
Cookbook, by Justin Edelson and Henry Liu. Copyright 2009 Justin
Edelson and Henry Liu, 978-0-596-51980-3."

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us
at permissions@oreilly.com.

P.5. Safari® Books Online

NOTE

When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library
that lets you easily search thousands of top tech books, cut and paste
code samples, download chapters, and find quick answers when you need
the most accurate, current information. Try it for free

at http://safari.oreilly.com.

P.6. Comments and Questions

We at O'Reilly have tested and verified the information in this book to the
best of our ability, but mistakes and oversights do occur. Please let us
know about errors you may find, as well as your suggestions for future
editions, by writing to:

O'Reilly Media, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookguestions@oreilly.com

We have a website for this book where examples, errata, and any plans
for future editions are listed. You can access this site at:

http://www.oreilly.com/catalog/9780596519803

For more information about this book and others, see the O'Reilly
website:

http://www.oreilly.com

P.7. Acknowledgments

Thanks to the O'Reilly staff, especially our editor Mike Loukides and
copyeditor Colleen Gorman. Thanks to Steven Shingler for his contribution
to Chapter 4. And thanks to all who reviewed this book including Juan
Pablo Tarquino, John Purcell, and David Koontz.

This book simply would not and could not exist without the tireless efforts
of the whole JRuby project team, including Charles Nutter, Thomas
Enebo, Nick Sieger, and Ola Bini. Thanks also to Sun and ThoughtWorks
for their ongoing support of JRuby. The JRuby project is hosted by The
Codehaus; thanks as well to Bob McWhirter for his work there.

We both would like to thank Nick Rockwell for his ongoing encouragement
and enthusiasm.

P.7.1. Justin Edelson

This book wouldn't have happened without the love and support of my
wonderful wife, Elizabeth. Special thanks to my sons: Owen, who typed
his name all by himself, and Benjamin, who can't yet.

Thanks to my team at MTV Networks: Michael Benoit, Keith Griffin,
Ramesh Nuthalapati, llya Reznikov, Chris Sindel, Jeff Yemin, and Jun
Zhou, for all their hard work. Thanks also to Warren Habib for his
support.

P.7.2. Henry Liu

Thanks to my friend Jon Baer for inviting me to my first Ruby meeting
and being a great collaborator throughout the years. I'm grateful to
Francis Hwang, Matt Pelletier, Sebastian Delmont, Trotter Cashion, and all
the members of the NYC Ruby group. They taught me Ruby and Rails by
answering all my newbie questions, and it was their passion and
enthusiasm for the technology that motivated me to dig deeper. Thanks
to all my colleagues at MTV Networks and specifically Mark Ache, Luke
Murphy, and Steve Azueta for their continued support. Most of all, thanks
to my family and my partner, Naomi; without her, none of this would be
possible.

Chapter 1. Getting Started

Introduction

Installing JRuby

Managing Packages with RubyGems

Using Both Ruby and JRuby

Sharing RubyGems

Referencing Java Classes from Ruby
Converting a Ruby Array into a Java Array
Adding JAR Files to the Classpath
Extending a Java Class in Ruby
Implementing a Java Interface in Ruby
Opening Java Classes with JRuby

Setting Up Eclipse for JRuby Development
Setting Up NetBeans for JRuby Development

Platform Detection in a JRuby Application

1.1. Introduction

JRuby is an open source implementation of the Ruby programming
language for the Java Virtual Machine (JVM). It allows Ruby applications
to be run within a Java Virtual Machine and interface with libraries written
in either Java or Ruby. Although the JRuby project was initiated in 2001,
interest in JRuby has grown significantly over the last few years,
reflecting an overall growth in interest in Ruby sparked by the success of
the Ruby on Rails framework. Sun has contributed to JRuby’s success by
employing members of the core development team and providing support
for JRuby in the NetBeans development environment, among other

efforts. The website for the JRuby project is
currently http://www.jruby.org.

1.1.1. Ruby

Ruby is a dynamic object-oriented programming language created by
Yukihiro Matsumoto, known by the nickname Matz, in the mid-1990s.
Ruby follows a style of versioning similar to the Linux kernel, where an
even minor version number indicates a stable release and an odd minor
version number indicates a development release. As a result, there are
two current versions of Ruby: 1.8.6, released in March 2007, is the
current stable release, and 1.9.0, released in December 2007, is the
current development release. The standard Ruby interpretert! is written in
C. There are several alternate implementations of the interpreter,
including JRuby, IronRuby (for Microsoft's .NET framework), and Rubinius.
Ruby does not have a formal language specification; however, one is
being developed through the wiki at http://spec.ruby-doc.org.

11 Ysually referred to as Matz's Ruby Interpreter (MRI).

As an object-orientated language, many of the underlying concepts of
Ruby will be familiar to Java developers, even if the syntax is not. The
biggest exception to this is Ruby's support for blocks. In Ruby, a block is
a grouping of code that gets passed to a method call. The receiving
method can invoke the block any number of times and can pass
parameters to the block. Support for a similar type of element, a closure,
is being contemplated for inclusion in Java 7; there are several competing
proposals and it is unclear which proposal, if any, will be

adopted. Example 1-1contains a simple Ruby class demonstrating the two
ways of defining a block in Ruby. The former syntax, using braces, is
typically used to create a block for a single statement. The latter syntax,
using the do and end keywords, is typically used for multistatement
blocks.

Example 1-1. Introduction to Ruby blocks

cl ass Hel | oWor | dSayer
def hello_world
yield "Hello"
yield "Wwrld"
yield "from Ruby"
end
end

sayer = Hel |l oWr| dSayer. new
sayer.hell o world { | message| puts nessage. swapcase }

or
sayer.hello_world do |it]

puts it.swapcase
end

NOTE
The Ruby yi el d function transfers control to the block argument.

This isn't to suggest that blocks are the only substantial difference
between Ruby and Java, but it is certainly one of the most significant, as
block usage is so prevalent within typical Ruby code. For example,
outputting the list of numbers between 1 and 10 in Java would look
something like the code in Example 1-2. The corresponding Ruby code is
shown in Example 1-3.

Example 1-2. Loop in Java

for (int i =1; i <= 10; i++) {
Systemout.println(i);
}

Example 1-3. Loop in Ruby

1.upto(10) { |x| puts x }

Ruby has an active developer community both online and in local
developer groups. The Ruby language website, http://www.ruby-lang.org,
has more information about these user groups. A wide array of books
about Ruby have been published, perhaps most famously Programming
Ruby: The Pragmatic Programmers's Guide (Pragmatic Bookshelf) by
Dave Thomas, Chad Fowler, and Andy Hunt, known as the "pickaxe book"

because of its cover, and The Ruby Programming Language by David
Flanagan and Yukihiro Matsumoto (O'Reilly).

1.1.2. JRuby

JRuby began its life as a direct port of the C-based interpreter for Ruby
1.6 written by a programmer named Jan Arne Petersen in 2001. For the
next few years, it was an interesting project, but had serious performance
limitations. Following the release of Ruby 1.8 in 2003 and then the
release of the Ruby on Rails web framework in 2004, a significant amount
of effort has been put into developing JRuby, especially in the areas of
compatibility and performance. In September 2006, Sun Microsystems
effectively endorsed JRuby when it hired two of the lead developers,
Charles Nutter and Thomas Enebo, to work on JRuby full-time. Since
then, a third lead developer, Nick Sieger, has become a Sun employee.™

21 A fourth lead developer, Ola Bini, works for the influential IT consulting company
ThoughtWorks.

For Sun, JRuby represents an opportunity to expand the prevalence of the
Java Virtual Machine. Although the JVM was originally tied very closely to
the Java language, the emergence of projects like JRuby, Jython (a Java
implementation of Python), Groovy (a scripting language inspired by
Ruby), and Scala (a functional/object-oriented programming language)
have proved that the JVM can host a wide variety of languages. This trend
culminated with the development of Java Specification Request (JSR) 223,
Scripting for the Java Platform. JSR 223 defines a standard API
(Application Programming Interface) for scripting languages to integrate
with the JVM. Implementations of the JSR 223 API are available for 25
different languages fromhttps://scripting.dev.java.net. This APl will be
discussed further in Chapter 3.

For users, JRuby represents a different opportunity: to take advantage of
the power of a dynamic language such as Ruby while still being able to
leverage existing Java libraries and application servers. This area will be
explored in the first two chapters.

With the release of JRuby 1.1 in April 2008, JRuby has closed the
performance gap with the C Ruby interpreter and is in many cases faster.
In terms of compatibility, the JRuby project strives to duplicate the
behavior of the standard Ruby interpreter whenever possible, even at the
expense of consistency with Java. Most of the core Ruby classes are
included, as is much of the standard Ruby library, the RubyGems package
management system, RDoc documentation support, and the Rake build
system. Despite these efforts at compatibility, there are some areas
where JRuby deviates from behavior exhibited by the C Ruby interpreter.

The most visible example of this is how JRuby handles threads. In this
case, however, JRuby is actually ahead of the standard Ruby interpreter
in that Ruby 2.0 is expected to have a similar threading model to what
JRuby already supports.

This chapter goes through the JRuby installation process, some core

Java/Ruby integration information, and finally a variety of IDE integration
options.

1.2. Installing JRuby
1.2.1. Problem
You want to install JRuby.

1.2.2. Solution

Download and extract the latest binary release from the JRuby
website, http://www.jruby.org. Add the bin directory to
the PATH environment variable.

1.2.3. Discussion
1.2.3.1. Windows

The JRuby website makes binary releases available in both ZIP and TGZ
file formats. Since Windows XP, Windows operating system software has
included support for extracting ZIP files. Commercial and open source
software packages are available that include support for TGZ files, such
as WinZip (http://www.winzip.com), 7-Zip (http://www.7-zip.org), and
IZArc (http://www.izarc.com).

It is not necessary to install JRuby in any particular location on your
computer. My preference is to install Java libraries and executables in
subdirectories of C: \ j ava. The results of extracting the binary for the
latest release at the time of this writing, 1.1, can be seen in Figure 1-1.

Figure 1-1. Extracted JRuby binary build

F a1
= =i=]E3
o
QExk - & - (F F B search Folders | [T+
Address (|5 Cijavaljruby-1.1 ol L_] e
Marmne Size Tvpe Drate Modified
[_hin File: Folder 41712003 7:05 PM
[_Jdocs File Folder 41712003 7:06 PM
b File Folder 41712003 9:34 PM
[_Jsamples File Folder 41712003 7:06 PM
_share File Falder 41712003 7:06 PM
ﬁ COPYING. CPL 12KB Control Panel exten... 3/28/2003 9:18 aM
<_Eﬂ COPYING. GPL 15KE GPL File 3/28/2008 9:18 AM
<_Eﬂ COPYING, LGFL 26 KB LGPL File 3/28/2008 9:15 AM
& objects 51.9 KB _é My Computer

After extraction, JRuby is ready to be used. The simplest way to see
JRuby in action is by running j i r b, JRuby's version of Interactive Ruby
(irb). Likeirb, jirb allows you to execute Ruby statements and
immediately see the results of each statement. JRuby includes both
command-line and GUI versions of j i rb in the bin directory.

The command-line version, seen in Figure 1-2, can be run by

executing bin\jirb.bat; the GUI version, seen in Figure 1-3, can be run by
executing bin\jirb_swing.bat. In both figures, some trivial Ruby code has
been executed. You can see that both the output of the put s method

(Hel 1 o Worl d) and its result (ni |) have been output.

Figure 1-2. Command-line jirb

irbh{main?:@@1:8> puts “"Hello World"
Hello World

=> mil

irbh{main? 86283

Figure 1-3. jirb GUI

B JRuby IRB Console (tab will autocomplete) E‘@|E|

Welcome to the JRuby IRE Conscle [1.1RCL]

irbimain):001:0> puts "Hello World™
Hello TWorld

=> nil

irb(main):002: 0

. If you launch either jirb.bat or jirb_swing.bat from

= Windows Explorer and all you see is a black window
appear and then disappear quickly, the likely cause is
that you do not have the JAVA HOVE environment
variable set, or the value of this environment variable is
incorrect. To set environment variables in Windows, use
the System control panel's Advanced
tab. JAVA HOME should point to the directory in which
you have Java installed.

You can also test JRuby from the command line by using the -
e (evaluate) option:

C\java\jruby-1.1\bin\jruby -e "puts '"Hello World"

To avoid having to retype the full path to JRuby's bin directory, add it to
the PATH environment variable by opening the System control panel and
clicking on the Advanced tab. On the Advanced tab, click the Environment
Variables button. This will bring up the Environment Variables dialog,
seen in Figure 1-4. Using the New and Edit buttons for System variables,
add a JRUBY_HOMEenvironment variable and also prepend the

value %J RUBY_HOVE% bi n to the PATH environment variable. You could
also simply prepend the full path to the bin directory to PATH, but using a
separate environment variable makes upgrading a bit easier.

Figure 1-4. Windows Environment Variables

Ilzer variables For edelsonj

Yariable Yalue
TEMP C:\Documents and Settingstedelsonjilo. .,
TMP C:iDocuments and SettingsiedelsonjiLo. ..

mew || Edt || Delete
Syskem variables
Yariable Yalue L
JRUBY _HOME Chijavaljruby-1.1
MAYER_HOME ciljavalapache-maven-2.0.8 —
MUMEBER_OF_P... 2
05 Windows_MWT
PATH %eJRUBY _HOMES4:\bin; %JaNA_HOMEY,, ..
mew || Edt || Delete |
[Ik, H Cancel]

Once you have configured the environment variables, click OK. These
changes will only be reflected in newly opened windows (something to
keep in mind if you have any command-line windows open). After adding
the bin directory to your PATH, you can then simply run the test shown
previously by executing:

jruby -e "puts 'Hello Wrld"

1.2.3.2. Linux and Mac OS X

The JRuby website makes binary releases available in both ZIP and TGZ
file formats. Although most Linux distributions and OS X include utilities
for extracting both types of files, TGZ files are preferable because files
extracted from them include permission settings, something that is not
the case with ZIP files.

NOTE

The JPackage Project at http://www.jpackage.org has a release available
in RPM format. At the time of this writing, JPackage did not have the
latest JRuby version available, but that may not be the case when

you're reading this.

If you have root privileges on the system where you want JRuby installed,
you should install JRuby based on whatever standards already exist. This
could mean installing JRuby in /usr/local/jruby,/usr/share/jruby,

or /opt/jruby, among other options. Based on OS X conventions, Mac
users should install in /opt/local/jruby or /usr/local/jruby. If you do not
have root privileges, then you likely need to install it inside your home
directory, such as ~/jruby. By default, the JRuby releases extract to a
directory containing the version number, so we'll simply create a symbolic
link between~/jruby and ~/jruby-1.1. This will facilitate upgrades later:

$ cd ~
$ tar -xzf jruby-bin-1.1.tar.gz
$1In -s jruby-1.1 jruby

Set JRUBY_HOME to the installation directory and add JRuby's bin directory
to the PATH environment variable; add lines to the ~/.profile similar to
those in Example 1-4.

Example 1-4. Example .profile file that adds JRuby to the PATH
environment variable

export JRUBY_HOMVE=~/| r uby
export PATH=$JRUBY_HOVE/ bi n: $PATH

Once the bin directory has been added to your PATH, you can test the
install by running a simple Ruby script:

$ jruby -e "puts 'Hello World'"
Hello Worl d

= You must add JRuby's bin directory to your PATH in order
to use any of the command-line utilities included with
JRuby, including jirb.

1.2.4. See Also

e Section 8.2"
e Section 1.4"

1.3. Managing Packages with RubyGems

1.3.1. Problem

You want to install Ruby on Rails or other Ruby packages for use with
JRuby.

1.3.2. Solution

Use the RubyGems support built into JRuby. Once JRuby has been
installed, you can immediately start using RubyGems to manage Ruby
packages by running the gem script included in JRuby'sbin directory. To
install a package, run:

$ geminstall packagenane

For example, to install the Ruby on Rails web framework, use:

$ geminstall rails

1.3.3. Discussion

RubyGems is the standard package management and distribution system
for Ruby packages. There are thousands of packages, referred to

as gems, available through the default RubyGems repository

at http://gems.rubyforge.org. Although some gems are specific to the C
Ruby implementation or JRuby, most are compatible with any Ruby
implementation.

Common RubyGems commands
include i nstal | , query, updat e, uni nstal | , and rdoc. The full list can be

output by using the hel p command:

$ gem hel p conmmands

GEM conmands ar e

build

cert
settings

check

cl eanup
t he | ocal

contents

dependency

envi ronnent
envi ronnent

fetch
directory

gener at e_i ndex
directory

hel p

i nstall

|ist
STRI NG

| ock

mrror

out dat ed

pristine
condition fromfiles

query
repositories
rdoc
search
server
server
sour ces
uses to search

speci fication
uni nst al |
unpack
directory
updat e
gens) in the |l oca

whi ch

Build a gem from a genspec
Manage RubyGens certificates and signing

Check installed gens
Clean up old versions of installed gens in

repository

Di splay the contents of the installed gens
Show t he dependenci es of an installed gem
Di splay informati on about the RubyGens

Downl cad a gem and place it in the current
CGenerates the index files for a gem server

Provide help on the 'gemi conmand
Install a geminto the | ocal repository
D splay all gens whose name starts with

Generate a | ockdown list of gens
Mrror a gemrepository

Di splay all gens that need updates
Restores installed gens to pristine

| ocated in the gem cache
Query geminformation in | ocal or renote

Cenerates RDoc for pre-installed gens
D splay all gens whose name contains STRI NG
Docunentati on and gemrepository HITP

Manage the sources and cache file RubyGens
for gens

Di spl ay gem specification (in yam)
Uninstall genms fromthe | ocal repository
Unpack an installed gemto the current

Updat e the naned gens (or all installed

repository
Find the |location of a library

For help on a particular conmmand, use 'gem hel p COWAND .

Commands nmay be abbreviated, so | ong as they are unanbi guous.
e.g., 'gemi rake' is short for 'geminstall rake'.

1.3.4. See Also

e The RubyGems Manuals, http://rubygems.org
e Section 1.4"

1.4. Using Both Ruby and JRuby
1.4.1. Problem

You have Ruby and JRuby installed on the same computer and want to
ensure that a Ruby script is processed by the correct interpreter.

1.4.2. Solution

Use the - S command-line argument for the ruby and jruby executables.
For example, RubyGems is traditionally invoked with a command like:

geminstall rails

Instead, use:

$ jruby -S geminstall rails

or:

$ ruby -S geminstall rails

1.4.3. Discussion

Popular Ruby packages such as Rake, Ruby on Rails, and RubyGems
include their own executable Ruby scripts that most guides, both online
and print, instruct you to invoke directly. Whether these scripts run with
Ruby or JRuby depends on how you've configured the PATH environment
variable, which platform you use, and what package is involved. Because
there are so many variables, this recipe prescribes using a single,
consistent method, passing the script name through the - S command-line
argument to either the ruby or jruby executables.

The - S command-line option instructs Ruby and JRuby to load a script file
from the PATH. JRuby includes its own copies of the Rake and RubyGems
scripts in bin/rake and bin/gem, respectively, but they are verbatim
copies of the original scripts. As a result, it doesn't matter which version
of the script you execute, only the interpreter with which you execute it.

This advice is particularly significant in the context of the RubyGems
script, gem. To create a new Rails application, you could run either:

$ ruby —S rails sanpl eapp

or:

$ jruby -S rails sanpl eapp

and see the same result. However, running:

$ ruby -S geminstall rails

and:

$ jruby =S geminstall rails

will install the Rails gem in two different locations. You can see this by
passing envi r onnent to the gem script:

$ ruby -S gem environnent

RubyGens Envi ronment :
- RUBYGEMS VERSION: 1.0.1 (1.0.1)
- RUBY VERSION: 1.8.5 (2007-09-24 patchlevel 114) [i386-1i nux]
- | NSTALLATI ON DI RECTORY: /usr/lib/ruby/gens/ 1.8
- RUBY EXECUTABLE: /usr/bin/ruby
- RUBYCGEMS PLATFORMVS:

- ruby
- x86-1i nux
- GEM PATHS

- Jusr/lib/ruby/gens/1.8
- GEM CONFI GURATI ON
- :update_sources => true
- :verbose => true
- :benchmark => fal se
- :backtrace => false
- :bulk_threshold => 1000
- REMOTE SOURCES
- http://gens. rubyforge.org
$ jruby -S gem environment
RubyGens Envi ronment:
- RUBYGEMS VERSION: 1.0.1 (1.0.1)
- RUBY VERSION: 1.8.6 (2008-01-07 patchl evel 5512) []java]
- | NSTALLATI ON DI RECTORY: [/ homne/justin/jruby-
1.1/I|b/ruby/gens/1 8
RUBY EXECUTABLE: /home/justin/jruby-1.1/bin/jruby
- RUBYCGEMS PLATFORMVS:
- ruby
- universal-java-1.6
- GEM PATHS
- /hone/justin/jruby-1.1/1ib/ruby/gens/1.8
- GEM CONFI GURATI ON
- .update_sources => true
- :verbose => true
- benchmark => fal se
- :backtrace => fal se
- :bul k_threshold => 1000
- REMOTE SOURCES:
- http://gens. rubyforge.org

1.4.4. See Also

e Section 1.3"

1.5. Sharing RubyGems
1.5.1. Problem

You already have a number of RubyGems installed and want to use those
gems from JRuby without reinstalling the gems.

1.5.2. Solution

Set the GEM_HOVE environment variable to your existing RubyGems
installation location. This value can be seen in the output of gem
envi ronment , where it is referred to as the installation directory:

$ ruby -S gemenvironnent | grep -i 'installation directory’
- | NSTALLATI ON DI RECTORY: /usr/lib/ruby/gens/1.8

$ export GEM HOVE=/usr/lib/ruby/gens/1.8

$ jruby -S gemenvironment | grep -i 'installation directory’
- | NSTALLATI ON DI RECTCRY: /usr/lib/ruby/gens/ 1.8

1.5.3. Discussion

Whereas some RubyGems are implemented entirely in Ruby, many are
implemented in a combination of Ruby and C (or, in a growing number of
cases, Ruby and Java). Pure-Ruby gems can be installed using either
JRuby or C Ruby. However, those implemented in a mixture can only be
installed using a compatible interpreter. The list of supported platforms
for each interpreter can be seen in the output of gem
elInllvllillrllolIn[lment. Because the RubyGems runtime knows this list of
supported platforms, it is possible to mix gems supporting different
platforms in the same directory; the runtime will select the appropriate
libraries.

1.6. Referencing Java Classes from Ruby

1.6.1. Problem

You want to write Ruby code that uses one or more Java classes.

1.6.2. Solution

First, you need to tell JRuby that you will be referencing Java classes from
your Ruby code. Do this by including an i ncl ude declaration at the top of
your Ruby file:

i ncl ude Java

The syntax for referencing a specific Java class depends on the package in
which the class resides. For packages starting with j ava, j avax, org,

and com you can simply reference the fully qualified class name or use

an i nport statement, as shown in Example 1-5.

Example 1-5. Creating a Java TreeMap from Ruby

using the fully-qualified class name
map = java.util.TreeMap. new

using an inport statenent
i mport java.util.TreeMap
map = TreeMap. new

For classes that reside in a package that does not begin
with j ava, | avax, org, or com as well as classes in the default package,
you need to use the i ncl ude_cl ass function, as in Example 1-6.

Example 1-6. Referencing a Java class with include_class

i ncl ude_cl ass
' EDU. oswego. cs. dl . util.concurrent. Concurrent HashMvap'

map = Concurrent HashMap. new

NOTE

The i ncl ude_cl ass function can also handle classes in packages starting
with j ava, | avax, or g, and comif you don't want to switch back and forth.

The i ncl ude_cl ass function can also be used to create aliases in cases
where a Java class name conflicts with a Ruby class name. To do this,
pass a block to the function. Example 1-7 aliases the Java Stri ng class
as JString so that it does not conflict with Ruby's Stri ng class.

Example 1-7. Creating an alias to avoid class name conflicts

i ncl ude Java

i nclude_cl ass 'java.lang. String' do | package, nane|
"JString"

end

p JString.new("A quick brown fox").indexC ("brown")

You can pass multiple class names to the i ncl ude_cl ass as a list. In this
case, you could provide the appropriate alias using a case statement, as
seen in Example 1-8.

Example 1-8. Aliasing multiple classes with case

include_class ['java.lang. String','java.lang.Integer'] do
| package, nane|
case nane
when "String”
"JString"
when "I nt eger”
"Jl nt eger"”
end
end

An alternative to this aliasing technique is wrapping a Java package in a
Ruby module using the i ncl ude_package function, as seen in Example 1-
9.

Example 1-9. Wrapping a Java package with a Ruby module

i ncl ude Java
nodul e Javalang

i ncl ude_package 'java.l ang'
end

p JavalLang:: String. new("A qui ck brown fox").indexOf("brown")

1.6.3. Discussion

JRuby makes referencing Java classes relatively natural from the
perspective of a Java developer. For the most commonly used packages,
you can use i nport just as you would in Java code.

When calling methods on a Java class, JRuby handles some type
conversion for you—instances of basic Ruby classes such

as Fi xNum Fl oat, and Stri ng are converted to instances of the
corresponding Java classes when passed to Java objects. JRuby includes
implementations of the j ava. util.Li st andjava.util.Mp interfaces
for handling Ruby Array and Hash objects. RubyArr ay objects can also be
coerced into Java Arr ay objects by calling the t o_j ava method. Example
1-10 includes a combination of Java and Ruby code, which demonstrates
this functionality.

Example 1-10. Ruby to Java type conversion

package org.jrubycookbook. ch01;

inport java.io.PrintWiter;

inport java.io.StringWiter;
i mport java.util.Arrays;

i mport java.util.Collections;
i mport java.util.List;

i mport org.jruby. Ruby;
i mport org.jruby.javasupport.JavaEnbedUtil s;

public class PrintJavad ass {

/1 Qutput the class and interface list for a single object
public String output(Cbject o) {
String className = o0.getC ass(). get Nane();
Li st<Cl ass> interfaces =
Arrays. asList(o.getC ass().getlnterfaces());

return String.format ("%, inplenents %\n", classNane,
i nterfaces);

}

/'l Qutput the class and interface list for each object in an
array
public String output(Object[] objects) {
PrintWiter witer = new PrintWiter(new StringWiter());
for (bject o : objects) {
String className = o.getC ass(). get Nanme();
Li st<C ass> interfaces = Arrays
.asList(o.getCl ass().getlnterfaces());

witer.printf("% (inside array), inplenents %\n",
cl assNane,

}

return witer.toString();

i nterfaces);

}

public static void main(String[] args) {
Ruby runtine =
JavaEnbedUtils.initialize(Collections. EMPTY_LIST);
String script = "@rinter =
org. j rubycookbook. ch01. Pri nt JavaC ass. new n"
+ "def output(o)\n"
"puts \"#{o.to_s} - #{ @rinter.output(o)}\"\n"
"end\ n"
"out put(1)\n"
"out put (0.5)\n"

+ + + +

"output('string)\n"

"out put (true)\n"

"output([4, 8, 15, 16, 23, 42])\n"

"output([4, 8, 15, 16, 23, 42].to_java)\n"
+ "output({ 'NY" =>"'New York', 'MA =>

' Massachusetts'})\n";

+ + + +

runtinme. eval Scriptlet(script);
JavaEnbedUtils.term nate(runtine);

NOTE

See Section 3.2 for an explanation of the JavaEnbedUt i | s class used
in Example 1-10.

When executed, this class outputs:

1 - Cass is java.lang.Long, inplenents [interface
j ava. | ang. Conpar abl €]

0.5 - Cass is java.lang. Double, inplenments [interface
j ava. | ang. Conpar abl e]

string - Cass is java.lang.String, inplenents [interface
java.io. Serializable,\

interface java.l ang. Conparabl e, interface
j ava. | ang. Char Sequence]
true - Cass is java.lang. Bool ean, inplenents [interface
java.io. Serializable,\

i nterface java.l ang. Conpar abl €]
4815162342 - Class is org.jruby. RubyArray, inplenents [interface
java.util . List]

[Lj ava. | ang. Obj ect ; @b058b - Received an array

In array: class is java.lang.Integer, inplenents [interface
j ava. | ang. Conpar abl e]

In array: class is java.lang.Integer, inplenents [interface
j ava. | ang. Conpar abl e]

In array: class is java.lang.Integer, inplenents [interface
j ava. | ang. Compar abl e]

In array: class is java.lang.Integer, inplenents [interface
j ava. | ang. Conpar abl €]

In array: class is java.lang.Integer, inplenents [interface
j ava. | ang. Conpar abl €]

In array: class is java.lang.Integer, inplenments [interface
j ava. | ang. Conpar abl €]

NYNew Yor kMAMassachusetts - Class is org.jruby. RubyHash,
i mpl enment s\

[interface java.util.Mp]

JRuby provides access to public static methods and variables through
the : : operator. Example 1-11 shows how you would access the static
methods and variables of the Java Mat h class.

Example 1-11. Accessing static methods and variables

require 'java'

puts java.l ang. Mat h:: nax(100, 200)
puts java.l ang. Mat h: : Pl

1.7. Converting a Ruby Array into a Java
Array

1.7.1. Problem

You need to pass a Ruby array to a method that accepts a Java array of a
specific type.

1.7.2. Solution

Call the Ruby array's t o_j ava method with an argument specifying the
component type of the array. For example, creating an array

of j avax. xm . transf orm stream St r eanSour ce objects would be done
like this:

i nport javax.xm .transform stream StreanSource

cnn = StreanSource. new
"http://rss.cnn.comrss/cnn_topstories.rss”
nmv = StreanSource. new

"http://ww. nmv.conlrss/news/news_full.jhtm"

Call a transform ng Java APlI. This method woul d have been
decl ar ed

with this signature:

public String transforn(StreanSource[] sources)

p transforner.transform([cnn, nv].to_java(StreantSource))

Primitives, as well as j ava. | ang. Stri ng, have Ruby symbols assigned to
them. For example, to create an array of i nt primitives:

[1,2,3,4,5,6,7,8,9,10].to_java(:int)

1.7.3. Discussion

This JRuby feature is critical for accessing Java APIs. For example, calling
a method through Java Management Extensions (JMX) involves passing
two arrays to the i nvoke() method of]j avax. mnanagenent . MBeanSer ver ,
one of (bj ect instances, storing the method parameters, and one

of Stri ng instances, storing the method signature. To call i nvoke() from
JRuby, you would do something like this:

br oker Name =

bj ect Narre. new(' or g. apache. acti venq: Br oker Nanme=l ocal host, Type=Bro
ker'

par a?ns = ["MyQueue"].to_java()

signature = ["java.lang. String"].to_java(:string)
server.invoke(broker Nane, 'addQueue', parans, signature)

1.8. Adding JAR Files to the Classpath

1.8.1. Problem

You want to reference a Java class which is contained in a JAR file that
isn't already included in your classpath.

1.8.2. Solution

Call Ruby's r equi r e method with the path to the JAR file. This path can
be relative to the current working directory:

require 'lib/comons-|ogging-1.1.jar’

or an absolute path:

require '/opt/javal commons-1 oggi ng/ bi n/ commons-1| ogging-1.1.jar'

If you are using Windows, this path can have either type of slash:

require 'c:\java\commons-| oggi ng-1. 1\ bi n\ cormons- 1 oggi ng-1.1.j ar
or
require 'c:/javal comons-1 oggi ng-1. 1/ bi n/ cormons-1 oggi ng-1.1.j ar

1.8.3. Discussion

Although this is an extremely useful feature of JRuby, it should be used
with caution, especially if you use absolute paths that are platform- and
installation-specific. Relative paths can seem like a better solution, but
are actually more limiting, as they are evaluated from the current working
directory, not the script's directory. Yet all is not lost.

An interesting aspect of this feature of JRuby is that the JAR file is added
to the classpath dynamically, while the application is running. This allows
you to use Ruby'’s string interpolation functionality to create absolute
paths. Example 1-12 includes a method that creates a path to a JAR file
in a local Maven repository.2!

B! This use of the Maven repository is naive, as it assumes the JAR file is already in the local
repository. Buildr, a build system for Java written in Ruby, includes support for downloading
JAR files from remote Maven repositories. More information about Buildr can be found

in Chapter 6.

Example 1-12. Creating a JAR file path dynamically

Set the HOVE environnent variable if USERPROFI LE is set
ENV[' HOVE'] = ENV[' USERPROFILE'] if (ENV['USERPRCFILE])

def require_from maven(group, artifact, version)

maven_path = "#{group}/#{artifact}/#{version}/#{artifact}-
#{version}.jar"

require "#{ENV[' HOVE]}/ . nR2/ repository/#{mven_pat h}"
end

Application code could use r equi r e to include this script and then use
the requi re_from maven method to reference a specific JAR file:

require 'require_from mven'
requi re_fromnmaven "commons-| oggi ng", "commons-| ogging", "1.1"

1.9. Extending a Java Class in Ruby
1.9.1. Problem

To use a Java API, you need to create a Ruby class that subclasses a Java
class.

1.9.2. Solution

Use the standard Ruby superclassing operator < and specify the Java
class you want to subclass. Example 1-13 shows a Ruby class that
extends the Java Thr ead class and overrides the r un() method.

Example 1-13. Subclassing a Java class in Ruby

i ncl ude Java

cl ass MyThread < java.l ang. Thread
def run
puts "hello world'
end
end

MyThr ead. new. st art

1.9.3. Discussion

The fact that the same syntax is used to extend both Java and Ruby
classes is an important design feature of JRuby, as it furthers the
seamless integration between the two languages.

_ﬂ@ One notable exception to this recipe is classes that use
Java 5 generics. Currently, these cannot be subclassed
with Ruby classes.

Abstract Java classes can also be extended by Ruby classes.

Examples Example 1-14 and Example 1-15 show an example of an
abstract Java class and a concrete Ruby class that extends the former.
The hel | o() method, declared abstract in the Java class, is implemented

in the Ruby class.

Example 1-14. An abstract Java class

package org.jrubycookbook. ch0Ol

public abstract class AbstractEl enent {
public abstract void hello();

public void sayHell o(int count) {
for (int i =0; i < count; i++) {
hel I o();
}

Example 1-15. Ruby class that subclasses an abstract Java
class

i ncl ude Java
i mport org.jrubycookbook. chOl. Abstract El enent

cl ass RubyEl enent < AbstractEl enent
def hello
puts 'hello world
end
end

RubyEl enent . new. sayHel l o 5

1.10. Implementing a Java Interface in Ruby

1.10.1. Problem

To use a Java API, you need to create a Ruby class that implements a
Java interface.

1.10.2. Solution

Create your class with method names that match the names in the Java
interface. As of version 1.1, JRuby runtime supports the use of duck
typing for implementing Java interfaces. Duck typing, seen in many
dynamic languages, including Ruby, means that the type of an object is
determined based on the methods implemented by the object. Example
1-16 shows this technique in action as a new Java thread by passing
the constructor an object that implements

the j ava. | ang. Runnabl e interface. The Hel | oTlhlIread class contains a
zero-argument r un method that corresponds to the method defined

in j ava. | ang. Runnabl e. JRuby requires no additional type information in
the HelloTlhllread class to instantiate the Thr ead object.

Example 1-16. Ruby implementation of a Java interface

i ncl ude Java

cl ass Hel | oThread
def run
puts 'hello world'
end
end

java. |l ang. Thread. new(Hel | oThr ead. new) . start

1.10.3. Discussion

There are few situations when duck typing isn't sufficient and you'll need
to provide additional type information to the interpreter. One case is
when a duck-typed JRuby object is passed as an argument to an
overloaded Java method. Without additional Java type information, the
JRuby interpreter doesn't definitively know which method to execute. The
solution is to use Ruby’'si ncl ude statement to assign an explicit Java
interface to a Ruby class. This provides the JRuby interpreter with enough
information about the object to execute the correct method. In Example
1-17, the Hel | oThr ead class is assigned the Runnabl e interface. As a
result, JRuby calls the desired exec() method and r unnabl e is output to
the console.

Example 1-17. Declaring Java interfaces in JRuby

Bal | oon. j ava

public interface Balloon {
void pop();
}

Bubbl e. j ava

public interface Bubble {
voi d pop();
}

Child.java

public class Chil d{

public void give(Bubbl e bubble){
System out. println("Thanks for the bubble.");
bubbl e. pop();

}

public void give(Balloon balloon){
Systemout. println("Thanks for the balloon.");
bal | oon. pop();

}

main.rb
i ncl ude Java

cl ass Myl arBal | oon
i ncl ude Java: : Bal | oon
def pop
puts 'OCh No!!!l'
end
end

child = Java:: Child. new
chil d. gi ve(Myl ar Bal | oon. new)

Because Ruby scripts implicitly create a top-level class, it is not even
necessary to define a new class to implement a Java interface. This
functionality, seen in Example 1-18, can be especially useful when
prototyping and testing.

Example 1-18. JRuby working with Java interfaces—condensed
version

i ncl ude Java

def pop
puts ' Bang'
end

child = Java:: Chil d. new
chil d. give(self)

Ruby modules are a natural fit to help implement Java interfaces. In some
ways they resemble abstract Java classes, but Ruby modules are different
in that a class may include many modules.Example 1-19 shows the use of
a module to implement a Java interface and the reuse of this module.

Example 1-19. Implementing a Java interface with a module

i ncl ude Java

nmodul e RunModul e
def run
l.upto(10) { |i| puts "You' re nunber #{i}" }
end
end

class Hell oThr ead
i ncl ude RunMbdul e
end

java. |l ang. Thread. new(Hel | oThr ead. new) . start

JRuby allows you to create an instance of the interface by using

the i npl method that's dynamically attached to all Java interfaces. The
method accepts a block as an argument that is executed for every
function call in the interface. The block defines two arguments: the name
of the method in the interface that initiated the block's execution, and a
variable input parameter to accommodate the method

arguments. Example 1-20 uses the i npl method to define the sorting
behavior for a Java Conpar at or .

Example 1-20. Using JRuby's impl method

i ncl ude Java

v = java. util. Vector. new
v. add_el enent (" Li ons")
v.add el emrent ("Ti gers")
v.add_el ement (" Bears")

java.util.Collections::sort(v, java.util.Conparator.inpl do
| met hod, *args|
case nethod.to_s
when "conpare”
args[0] <=> args[1]
when "equal s"

args[0] == args[1]
end
end)
v. each do |val|
puts val
end

Another interesting technique of working with an interface is to use a
Ruby block as the input to a method where you would normally use a
single-method Java interface. The Ruby block style can be used with
nonoverloaded methods that expect to be called with a single argument
that is a Java interface. When a block is passed to such a method, the
JRuby runtime attempts to generate a proxy object that implements the
interface. Overloaded and multiple methods make this process ambiguous
and unworkable. Example 1-21 illustrates how this feature can make the
Java Swing development significantly more concise.

Example 1-21. Implementing a Java interface with a Ruby block

frame = javax.sw ng. JFrame. new
franme. set _size 500, 200

a
b

j avax. swi ng. JButt on. new(" hel | 0")
j avax. swi ng. JBut t on. new("wor | d")

#define the function using a bl ock

a.add_action_listener do |evt]
puts 'hell o

end

define the function using a Ruby Proc
p = lanbda{ |evt| puts "world'}
b.add_action_listener &p

frame. add a

frane.add b

frame. set | ayout (java. awt. &G idLayout.new 1, 2))
franme. show

A Ruby Pr oc object can also be passed once it is transformed into a Ruby
block using the & operator.

NOTE

Java interfaces that define a single method are sometimes referred to
as single abstract method types, abbreviated as SAM types. All of

the proposals for adding closures/blocks to Java 7 attempt to make
implementation of these types significantly simpler and closer to what
JRuby provides.

1.10.4. See Also

e Section 5.2"

1.11. Opening Java Classes with JRuby
1.11.1. Problem

You want to add methods to a Java class.

1.11.2. Solution

Import the Java class so that the class can be referenced, and add
methods as you would to any Ruby class.

1.11.3. Discussion

In Ruby, class definitions are never finalized; new methods can be added
at any time. This is perhaps one of the most significant differences
between Java and Ruby. In Java, class definitions are tightly bound to
filenames and directory structures. The complete definition of the Java
class j ava. uti | . HashMap will be found in a file

named /java/util/HashMap.class. In Ruby, no such relationship exists and
classes can be defined across multiple source files. With JRuby, it's
possible to apply this language feature to Java classes. Example 1-

22 shows a simple example of enhancing the j ava. uti | . HashMap class
with a method named i s?.

Example 1-22. Adding a method to HashMap

i ncl ude Java
i mport java.util.HashMap

cl ass HashMap
def is?(key, val ue)
val ue == get (key)
end
end

As you can see in this example, within the new method we can call
methods defined by the original Java class. Once this code is executed,
JRuby instances of the HashMap class, including those already created, will
have this new method. This even applies to instances of the class created
by Java code. Examples Example 1-23 and Example 1-24 contain a Java
class that creates aHashMap object and Ruby code that opens

the HashMap class and exercises the new method.

Example 1-23. A simple class to generate a HashMap object

package org.jrubycookbook. ch01;
i mport java.util.¥*;

public class MapMaker {
public static Map makeMap() {
Map m = new HashMap();
m put ("k1", "v1");
m put ("k2", "v2");
return m

Example 1-24. Applying open class semantics to an instance
created with Java code

i ncl ude Java

i mport java.util.HashMap
i mport org.jrubycookbook. chOl. MapMaker

h = MapMaker . nakeMap()

cl ass HashMap
def isNot ?(key, val ue)
val ue != get (key)
end
end

puts (h.isNot? "k1', 'vl1')
puts (h.isNot? 'k2', 'v3')

However, any added methods are only visible to the JRuby runtime. If
you were to pass an instance of this modified HashMap class to Java code,
the new methods would not be available.

JRuby also includes a utility method called ext end_pr oxy that allows you
to add new methods to all implementations of a particular

interface. Example 1-24 could be rewritten to use this functionality so as
to work with any implementation of j ava. uti |l . Map. This can be seen

in Example 1-25.

Example 1-25. Using extend_proxy to open all implementations
of an interface

i ncl ude Java
i mport org.jrubycookbook. chOl. MapMaker
h = MapMaker . nakeMap()

JavaUtilities.extend_proxy('java.util.Mp') do
def isNot?(key, val ue)
val ue ! = get (key)
end
end

puts (h.isNot? 'k1', 'v1')
puts (h.isNot? 'k2', 'v3')

1.11.4. See Also

e Section 1.6"

1.12. Setting Up Eclipse for JRuby
Development

1.12.1. Problem

You use the Eclipse Integrated Development Environment (IDE) for Ruby
development and want to run Ruby code easily with the JRuby
interpreter.

1.12.2. Solution

When using the Ruby Development Tools (RDT) plugin, create a new
Ruby VM definition that is pointed at your JRuby installation location and
whose type is set to JRuby VM When using the Dynamic Language Toolkit
(DLTK) plugin, create a new Ruby interpreter definition that references
the JRuby launch script: bin\jruby.bat (for Windows) or bin/jruby (for
Linux and Mac OS X) from your JRuby installation.

1.12.3. Discussion

Both RDT and DLTK can be configured to work with multiple Ruby
interpreters. RDT has a specific setting available for the JRuby interpreter,
whereas DLTK simply treats JRuby as a generic Ruby interpreter.

1.12.3.1. RDT

RDT, available from http://rubyeclipse.sourceforge.net, supports
configuration of Ruby interpreters based on the installation directory. To
add JRuby as an interpreter, open the Preferences dialog and locate the
Installed Interpreters page. Click the Add button to open the Add RubyVM
dialog (seen in Figure 1-5). In this dialog, select JRuby VM as the RubyVM
type and select the JRuby installation directory as the RubyVM home
directory. You can also override the display name with something more
user-friendly. Once you're satisfied with the settings, click OK.

Figure 1-5. RDT Add RubyVM dialog

£ Add RubyVM (%]

Rubeyr bype: |JRuI:|y WM W |

Please enter or browse ko the ruby install location,

This will typically be fusr, fusrflocal, fopt or Ciruby,

This is the lacation af the ruby install, nok the executable,
wi'e will auko-dekect the executable From this path,

Rubet home direckory | Chiavaljruby-1,1RC1 | [Browse, ,, l

Fubyhh display name: | jruby-1.1RiC1 |

Default Wi Arguments: | |

Rubwhh syskem libraries;

B Chjavaljruby-1.1RC LB rubydsite_rubed 1.8 Add External Folders, ..]
B Crijavaijruby-1, IRCLE rubylsite_rubey
B Chjavatjruby-1, 1RC1YE rubyh 1.5

[Restore Default]

[Ok H Cancel]

1.12.3.2. DLTK

The Dynamic Language Toolkit project, hosted

at http://www.eclipse.org/dltk, is a broad project sponsored by the
Eclipse Foundation to provide general support for dynamic languages in
the Eclipse development environment. Currently, support is available
through the DLKT project for Ruby, TCL, and Python. The DLTK Ruby
plugin does not make a distinction between a standard Ruby interpreter
and the JRuby interpreter. Just as when configuring RDT, open the
Preferences dialog and locate the Interpreters page. Click the Add button
to open the "Add interpreter” dialog, seen in Figure 1-6. Select

the bin\jruby.bat (for Windows) or bin/jruby (for Linux and Mac OS X) as
the interpreter executable. As with RDT, you can change the interpreter
name to something more user-friendly. Finally, click OK to add the
interpreter.

Figure 1-6. DLTK "Add interpreter" dialog

& Add interpreter [5__(|
Interpreter kype; |Generic Rubey inskall w |
Interpreter name: | JRubey 1.1RC1| |
Interpreter executable: | Cihjavaljruby-1, 1RC 1 bintjruby bat | [Browse. ..]

Interpreter arguments: | |

Interpreter system libraries:

E‘ Chijavaljruby-1, 1IRC 1B yrubyh site_robyi 1.5 [.ﬁ.u:h:l External libraries. ..]
Eu Chiavaljruby-1, 1IRC 1B yrubyh site_robey
& Crhjavaljruby-1. 1RC1iblrubeA 8

[Restore Default]

.:':?:. [(0] 4] [Zancel]

1.12.3.3. Running JRuby as a Java application

Although both RDT and DLTK can easily interface with the JRuby
interpreter because they are both designed for Ruby development, you
are not able to manage the classpath used by the Java Virtual Machine
inside which JRuby is running. This is a problem when referencing Java
classes located in external JAR files. Since the JRuby interpreter is simply
a Java class, it can be run as such within Eclipse. To do this, open the Run
dialog by selecting "Open Run Dialog..." from the Run menu. Select Java
Application and click the New button to create a new launch configuration.
For the Main class, enter or g. j ruby. Mai n. In the Arguments tab, put the
path to the Ruby file you want to run in the Program arguments section
(along with any other application-specificarguments). The VM arguments
should include the j r uby. base, j ruby. honme, and j ruby. | i b system
properties. Set j ruby. base and j r uby. hone to the JRuby installation
directory and j r uby. | i bto the JRuby lib directory for the last one. Eclipse
has an expression language available to this dialog that allows you to
reference the JRUBY_HOVE environment variable while setting these
properties with this value:

-Dj ruby. base="${env_var: JRUBY_HOVE}" -
Dj r uby. home="${env_var : JRUBY_HOVE} "
-Djiruby. lib="${env_var: JRUBY_HOVE}/ I i b"

Finally, in the Classpath tab, add bsf.jar and jruby.jar from
JRuby’s lib directory and any other JAR files needed by your code. Then,
click the Run button to execute.

Eclipse also supports expressions that prompt the user for input. You can
use this functionality to make the launch configuration more reusable.
You can prompt for a file, which opens the operating system's standard
file selection dialog, with:

${file_pronpt: Ruby Script Nane}

To prompt specifically for a file within the workspace, use:

${resource_l oc: ${string_pronpt: Ruby Script Nane}}

In this case, the user is prompted for a location within the Eclipse
workspace that is then converted into a filesystem path. You can see
these expressions in use in Figure 1-7.

Figure 1-7. Generic JRuby launch configuration

Mame: | Generic JRuby Launch

& Main [6d= Arguments = JRE | “%; Classpath E,ySu:uurce ﬁEnvirunment £ Comman
Prograrm argumenks:

"$4resource_loc: $4string_prompt:Ruby Script Mamek

Y1 arguments:

-Djrubey . base="¢{env_var: JRUBY_HOMEL" -Djruby . home="¢${env_wvar: JRUBY_HOMEH"
-Dirube lib="¢{er_var: JRIEY_HOMEHliB"

Wiarking directory:
(%) Default:

() Other:

Running this configuration opens a dialog, seen in Figure 1-8, where you
can enter the workspace path to the Ruby script you want to execute. On
subsequent executions, Eclipse automatically populates this dialog with
the last value entered.

Figure 1-8. Eclipse variable input dialog

Please input a value For Ruby Script Mame

| lsimplepraoject/lagtest.rh |

Ik l [Cancel

Note that using this type of launch configuration doesn't require using
RDT or DLTK, although those plugins would still provide useful
functionality, including code completion and RDoc integration.

1.12.4. See Also

e Section 1.2"

1.13. Setting Up NetBeans for JRuby
Development

1.13.1. Problem

You want to develop Ruby applications with NetBeans.

1.13.2. Solution

Download NetBeans 6.5 from http://www.netbeans.org and run the
installer. NetBeans is available in a variety of bundles; both the Ruby and
All bundles include support for Ruby development. In addition to Ruby,
the All bundle includes support for Java, Web, Mobile, and C/C++, as well
as both Apache Tomcat and Sun GlassFish application servers.

If you are already using NetBeans 6.5, Ruby support can be installed
using the Plugins dialog, seen in Figure 1-9. This plugin adds new
NetBeans project types for Ruby and Rails, graphical debuggers for Ruby
and Rails, a Ruby Code Editor, and a RubyGems client.

Figure 1-9. Installing the NetBeans Ruby plugin with the
Plugins dialog

Available Plugins (500 | pownloaded | Installed {18) | Settings

Reload Catalog Search:

Inskall | Mame | Category T |Su:uu... | :) L. .
[T 5aaS Services Code G... PHP U [JRuby and Rails Distribution
[] J5F Portlet Bridge Libr... PortalPack]
[] SunJava System Port... PortalPack U (L] NetBeans Certified Plugin
[] feneric Fortlets PartalPack (¥
[] openPortal Fortlet Co... PortalPack) Yersion: 0.104
[] wisual ‘Web I5F Paortlet,.. PortalPack) Date: 5/11/08
: sy Source: MetBeans
JRuby and Rails Distri, | | | Homepage: bitp:) v, netbeans. org)
GlassFish W3 JRuby In... Ruby TRE |
Extra Ruby Color The... Ruby U
Ruby and Rails Ruby U Plugin Description
Ruby Extra Hints Ruby ‘_—:] Bundled distribution of JRubyw 1.1.3 and Ruby on Rails 2.0.2
] pHP Scripting T
] =soa S04 ¥
[] EPEL S04 U
1 Comnnsite annlicabinn. S04 ¥ :V]

Install | S plugins selected, 19ME

l Clase][Help]

Once the Ruby plugin has been installed, use the Ruby page in the Ruby
Platforms dialog seen in Figure 1-10 to manage the Ruby runtimes used
by your projects. Notice the options to add new runtimes or modify an
interpreter's gem repository location and debug level. By default, your
Ruby project will use the JRuby runtime shipped with the Plugin, but you
can assign a specific Ruby Platform to your application by using the
project's properties dialog.

1.13.3. Discussion

After several years of playing second fiddle to Eclipse, Sun has recently
made some significant investments in the NetBeans project, and it
shows—nowhere more so than in the Ruby plugin. The NetBeans Ruby
Code Editor includes syntax highlighting, code coloring, refactoring
support, and powerful code completion capabilities. The code completion
functionality can be seen in Figure 1-11. The editor displays a list of
possible methods in a small window, including built-in and user-defined

Ruby classes. Hitting the space bar at this point inserts the complete
name into the editor.

Figure 1-10. NetBeans Ruby Platform Manager dialog

®'Ruby Platform Manager IEI

Platforms:

Built-in JRuby 1.1.3 Flatfarm Marne: |JRL|I:|';-' 1.8.6 (2008-07-19 patchlevel 114) [java) |
Ruby 1.8.6-p111

Inkerpreter: |C:'|,F'r|:|gram FilesiMetBeans 6.5 Bekalrubyw2)jruby-1.1 .3'|,I:ui|

Gem Home: |i|es'|,NetBeans 6.5 Beta'l,rubyZ'l,jruI:uy-l.1| [Browse, ..]
Gem Path: C:\Program Files\MetBeans 6.5 Betatrub add. ..
Remove
£] 11}] m
Gem Tool: |Z:'|,F‘ru:ugram FilesiMetBeans 6.5 Betairubywijruby-1,1 .3'|,I:|in|

Ruby Debugger
Debugager Engine: Fast Debugger [ruby-debug-ide)

Add Platform. .. Remove Autodetect Platforms

I Close ” Help]

Figure 1-11. NetBeans Ruby code completion

File Edit Wiew MNavigate 3Source Refactor Build Run Yersioning Tools window Help

™ & ¢ 5 € [<defaur> M FH D ER-

‘Proj... 40 = |5Files - Services @ main,tb* x| Stark Page = |II|E]@
EI@ Rubyapplicationl B- -G 5 |5||%|{F> N
E@ Source Files
@] main.rh
[#-F Test Files
[g] Rakefile
o[README
‘main.rb - Navigator 4 =
B MyTest
e (0 hello
Fikers: (@ |[0 |[@ | ERERRET - [135_many objects
————— - =) has_one :object
: Qutput - Rubyapplicationl (=2 Hashnew{ [1,2]1[2] =} Hash ¥ =
D|> hello wnrldl ['.\P
|
%
2

You can also change the editor's font and highlighting colors or change
the key bindings to match your personal preferences. Configuration is
done in the Options dialog seen in Figure 1-12. Choose the Fonts & Colors
tab and select a Profile from the list. OS X Ruby developers might be
interested in a TextMate theme, Aloha
(http://pages.huikau.com/AlohaTheme.nbm), for a more familiar color
palette and highlighting rules. The Keymap page has bindings for Eclipse,
Emacs, and older versions of NetBeans.

Figure 1-12. NetBeans Fonts & Colors Options dialog

X

W' Options

% B | & &
7 4
General Editor Fonks & Colors Keymap Miscellaneous
Brofile: | are
Syntax | Highlighting | Apnotations | Diff |
Language: |F'.II Languages El
Category:
Fonk: Monaco 12 |
Character
Comment F Foreground: | [[221,221,221] [v]
Entity Reference | Background: |. [43,43,43] [:]
Error
Field Effects: | Maone E]
Identifier
Effect Color:
Keyword M
Preview:
juw A-
% Comment.
"/
public class JavaExample { I:]
Lo J (L comcel][teb]

1.13.4. See Also

e Section 2.12"

1.14. Platform Detection in a JRuby
Application

1.14.1. Problem

You would like to detect the platform used by the Ruby runtime and
customize your code for a JRuby runtime environment.

1.14.2. Solution

You can detect whether your application is running in JRuby by evaluating
the JRUBY_V E[RIISION system variable. This value will always be defined

in a JRuby application but never in any other Ruby runtime.

The gener at e_random nunber method in Example 1-26 uses the random
number generator from the Java Mat h class in a

JRuby environment; otherwise, the application calls Ruby's r and method.

Example 1-26. JRuby platform detection

cl ass Detecti onExanpl e

def generate_random nunber
i f(defined?(JRUBY_VERSI ON))
require 'java'
puts 'executing java nethod'
j ava. |l ang. Mat h. random

el se
puts 'executing ruby nethod
rand(0)
end
end

end

d = Detecti onExanpl e. new
puts d. generate_random nunber

1.14.3. Discussion

The RUBY_PLATFCRMvariable has information about the runtime
environment and is set to j ava in JRuby. It was used with early versions
of JRuby for platform detection, but the JRUBY_ VERSI ONvariable was later
added to identify unequivocally that the code was running in JRuby and
not another Ruby interpreter written in Java. The new variable also
opened up the possibility for JRuby version-specific code.

Chapter 2. JRuby on Rails

Introduction

Installing and Setting Up Rails

Packaging Rails As a Java EE Web Application
Using an External Gem Repository with a Web Application
Configuring the JRuby-Rack Servlet
Packaging Rails with a JNDI DataSource
Deploying Rails on Tomcat

Deploying Rails on JBoss

Deploying Rails on Jetty

Deploying Rails with jetty rails

Deploying Rails with Mongrel

Deploying Rails on the GlassFish v2 Server
Using the GlassFish v3 Gem

Using ActiveRecord Outside of Rails
Accessing Common Java Servlet Information
Configuring Session Storage

Controlling the Classes, Directories, and Other Files Packaged into a Rails
WAR File

Changing the Name of the WAR File and the Staging Area
Deploying a Rails Application to the Root Context
Creating a Rails Application with Aptana Studio

Accessing Static Files in Your Rails Java EE Application

2.1. Introduction

Since its introduction in mid-2004, the Ruby on Rails web framework has
rapidly gained a significant following within the web development
community. It is the single largest factor in the overall increase in interest
in the Ruby programming language. Likewise, JRuby's ability to run Rails
applications inside a Java Virtual Machine has been a driver for interest in
JRuby. This chapter explores some techniques for running Rails
applications in a Java environment.

Ruby on Rails is a framework for developing web applications that follows
the model-view-controller (MVC) architecture. The notion of Convention
over Configuration is stressed throughout the framework, most
prevalently within ActiveRecord, the object-relational-mapping (ORM)
subsystem. ActiveRecord uses database metadata (table and column
names) to dynamically define domain classes. Using ActiveRecord, simply
adding a new column to a database table automatically adds a
corresponding field to the related domain class.

Running Rails applications on JRuby provides several advantages:

o Rails applications can be deployed into existing Java EE containers
such as Tomcat, JBoss, and GlassFish.

e Through Java Database Connectivity (JDBC), Rails applications can
be connected to virtually any database for which a JDBC driver
exists.

o Rails applications can access container-managed database
connection pools through Java Naming and Directory Interface
(JNDI).

In short, the combination of JRuby and Rails produces an enterprise-
friendly package that blends seamlessly into an existing Java EE
environment. From an application deployer's perspective, the Rails
application is just another Java EE web application; if INDI data sources
are used, the application deployer never even needs to look at Rails
configuration files.

Beyond JRuby, the primary library that provides the bridge between the
Java EE container and Rails is called JRuby-Rack. JRuby-Rack is basically
a Java servlet filter that dispatches requests to a Rails application running
inside JRuby. JRuby-Rack creates a pool of JRuby runtime instances.
Configuration of the JRuby-Rack servlet is discussed in Section 2.5. Early
approaches to Java EE packaging and servlet integration used the
GoldSpike project, but that code has been deprecated and replaced by
JRuby-Rack.

In addition to JRuby-Rack, the JRuby team has produced Warbler, a tool
for packaging a Rails application as a WAR file to facilitate deployment.

The middle part of this chapter goes through the specific steps required to
deploy Rails applications onto major open source Java EE application
servers. Although these recipes are very similar to one another, we
thought it was important to provide the container-specific details. The last
few recipes describe some additional configuration and usage scenarios
when using JRuby and Rails together.

NOTE

As this book was going into production, the Rails team announced that
the upcoming Rails 2.2 release would incorporate a number of changes
designed to improve the thread-safety of the Rails core. Although it is too
soon to tell how effective these changes will be, the likely outcome is that
deploying Rails applications on JRuby will become substantially simpler.
The JRuby team is closely tracking these developments and will
undoubtedly continue to iterate the tools described in this chapter to take
advantage of any new capabilities that are part of future Rails versions.

2.2. Installing and Setting Up Rails
2.2.1. Problem

You want to run Ruby on Rails with JRuby.

2.2.2. Solution

Install the latest Ruby on Rails gem with this command:

$ jruby =S geminstall rails

If you're running Rails 2.x, it is recommended you install the j r uby-
openssl gem to take advantage of all the security features and session
storage options. This gem is the Java implementation of

the openssl gem:

$ jruby -S geminstall jruby-openssl

Now create your Rails application with JRuby:

$ jruby =S rails MKillerApplication

Test your new Rails application:

$ cd MyKil | er Application
$ jruby ./script/server

Open your browser and go to http://localhost:3000. You should see the
ubiquitous Rails welcome screen, shown in Figure 2-1.

Figure 2-1. Ruby on Rails welcome screen

FRuby on Rails: Welcome aboard - Mozilla Firefox

You're riding Ruby on Rails!

About your application’s environment

Getting started

Here's how to get rolling:

. Create your databases and edit

config/database.yml

Rails needs to know your login and password.

File Edit iew History Bookmarks Tools Help :::.
@ - 4 < 2} | O reep:ffocahost:3000/ [) [[Clz] cooge &)
L windows Marketplace
|
Welcome aboard G v rom vt

Join the community

Buby on Rails
Dfficial wehlog
Mailing lists
IRC channel
Wiki

Bug tracker

Browse the

2. Use script/generate to create your documentation
models and controllers
. . Rails 4P
To see all available options, run it without parameters. e e)
Ruby standard library
Ruby core

. Set up a default route and remove or

rename this file

Routes are set up in config/routes.rb.

Dane

2.2.3. Discussion

The next step is to configure Rails to connect to your database. The JRuby
team has made this easy by allowing Rails to use the familiar and widely
supported Java JDBC drivers. You first need to install the acti ver ecord-

j dbc- adapt er gem:

$ jruby -S geminstall activerecord-jdbc-adapter -y —no-ri —- no-
rdoc

The gem allows the Rails database management system, ActiveRecord, to
use a JDBC connection or connection pool for database access. This can
be conveniently configured in the standard Railsdatabase.yml file by
specifying the JDBC URL or a JNDI address. The

example database.yml in Example 2-1 is configured to use a JDBC
connection in the development environment and container-

provided j avax. sql . Dat aSour ce with the JNDI

name j ava: conp/ env/j dbc/rail s_db in the production environment.
Remember to include the JDBC driver in your classpath when using the
standard j dbc adapter.

Example 2-1. Example database.yml using JDBC

devel opnent :
adapter: jdbc
url: jdbc:nysqgl://1ocal host: 3306/ rubycookbook_devel oprent
driver: com nysgl.jdbc.Driver
user name: jruby
passwor d: cookbook

pr oducti on:
adapter: jdbc
jndi: java:conp/env/jdbc/rails_db
driver: comnysgl.jdbc.Driver

The JRuby Extras project contains a set of database adapters for the most
commonly used open source databases by Java developers, including h2,
JavaDB (Derby), MySQL, HSQLDB (Hypersonic), and Postgres. The
adapter gems give you the option of using ordinary Rails database
configuration values in your database.yml file rather than specifying a
class and JDBC driver URL. The gems also include and automatically load
their respective JDBC driver JARs, so it isn't necessary to manually
include the classes. If you are using one of the supported databases, you
can install the gem by adding

your database name, nysql , post gres, der by, hsql db, or h2 to the base

gem name, acti verecor d-j dbc<dat abase nane>- adapt er. This is how
you would install the adapter for a MySQL database:

$ jruby -S geminstall activerecord-jdbcnysql -adapter

This database.yml in Example 2-2 shows an example configuration that
uses the newly installed gem. Notice how it doesn't use a JDBC URL as in
the previous example, but uses standard Rails configuration parameters.

Example 2-2. Example database.yml using activerecord-
jdbcmysqgl-adapter

devel opnent :
adapt er: jdbcnysql
encodi ng: utf8
dat abase: |jrubycookbook devel oprment
usernane: jruby
passwor d: cookbook
port: 3306
host: 1 ocal host

2.2.4. See Also

e Section 2.6"
e The JRuby Extras Project, http://rubyforge.org/projects/jruby-
extras

2.3. Packaging Rails As a Java EE Web
Application

2.3.1. Problem

You want to package a Rails app as a Java EE web application for
deployment onto a standard Java EE web container.

2.3.2. Solution

Use Warbler to package your Rails application as a WAR file. Start by
installing the gem:

$ jruby -S geminstall warbler

This gem adds the war bl e command, which allows you to create,
configure, and clean up the WAR file. All Warbler commands should be
executed in the root directory of your Rails application. Start by creating a
Warbler configuration file with this command-

$ jruby —S warble config

The new configuration file is written to config/warble.rb. This file allows
you to set most of the necessary options for building your WAR and
determining how Rails will run in the web container. Open warble.rb and
configure confi g. webxm . rai | s. env to the environment of your Rails
deployment. Next, add all the gems used by your web application to

the confi g. gens hash except for the rai | s gem. Rails is included in the
default hash. An example warble.rb file showing these options can be
seen in Example 2-3.

Example 2-3. Example Warbler configuration file

Val ue of RAILS ENV for the webapp
config.webxm .rails.env = 'devel opnent’

List of all your application's gens
config.gens << "activerecord-jdbcnysqgl - adapter"”
confi g.genms << "jruby-openssl"”

You're ready to create a WAR file by running this command:

$ jruby -S warble war

This generates a WAR file named the Rails project home directory name
by default. For example, if our Rails project was in

the MyKillerApplication folder, the WAR file would be
namedMyKillerApplication.war. This WAR file can then be deployed into
your Java EE container using the container’'s deployment process.

2.3.3. Discussion

Warbler is a Ruby gem for packaging a Rails application as a Java EE web
application. It is built on the Rake build system and JRuby-Rack serviet
adapter. The default implementation of the adapter uses a servlet filter
that allows the container's default servlet to process the static content
rather than Rails. Early versions of Warbler used the GoldSpike servlet,
but the GoldSpike project has been deprecated and has been replaced by

JRuby-Rack. The JRuby-Rack library includes a stub version of the
GoldSpike servlet in order to maintain compatibility with legacy GoldSpike
applications.

The unpacked source of the WAR file is found in the newly

created tmp/war folder in the project's home directory. If you browse the
contents of the unpacked WAR file, you'll see some parts of your Rails
application mixed in with other familiar Java EE folders. Warbler
reassembles the Rails application to the Java EE standard by placing the
static content normally found in the Rails publicfolder in the top level of
the WAR and packaging the rest of the Rails application in the WEB-

INF directory. Warbler has also bundled jruby-rack.jar, which contains the
necessary classes to integrate with a Java EE container, and jruby-
complete.jar, the standalone distribution of the JRuby with all the
dependent classes, in the WEB-INF/lib directory.

The war task is actually comprised of many subtasks, which you can
access separately. Since Warbler is a wrapper around Rake, use the -
T flag to see a full list of Warbler's options and description of its
capabilities:

$ jruby -S warble -T
rake config # Cenerate a configuration file to
custoni ze your wa...

rake pluginize # Unpack warbler as a plugin in your Rails
application

rake version # Di splay version of warbler

rake war # Create MyKill erApplication. war

rake war: app # Copy all application files into the .war
rake war: cl ean # Clean up the .war file and the staging
area

rake war: gens # Unpack all gens into WEB-INF/ gens

rake war:jar # Run the jar command to create the . war
rake war:java_classes # Copy java classes into the .war

rake war:java_libs # Copy all java libraries into the .war
rake war: public # Copy all public HTM. files to the root
of the .war

rake war: webxni # Generate a web.xm file for the webapp

By default, Warbler will include the latest version of each gem in your
gem repository, but you have the option to target specific versions of
gems when packaging the WAR file. Set theconfi g. gens hash with the
version number of the gem like this:

config.gems["rails™] = "2.0.2"
config.gems["activerecord-jdbcmysqgl-adapter™] = ""0.8.2"

2.3.4. See Also

e Section 2.2"

2.4. Using an External Gem Repository with
a Web Application

2.4.1. Problem

You don't want to package your gems into your web application but want
to use a gem repository on the filesystem.

2.4.2. Solution

There are a few situations where you might want to use a different gem
repository outside of the default JRuby runtime’s repository. This could
useful when you are maintaining a shared set of gems that are being
accessed by both C Ruby and JRuby. You can configure your web
application to use a separate gem repository through

thegem.path or gem.home system properties. These properties can be set
in the WAR's descriptor file, web.xml, or through a system property when
the container is started, as seen in Example 2-4.

Example 2-4. Sample web.xml setting the gem.path context
parameter

<context-param>
<param-name>gem.path</param-name>
<param-value>C:\projects\jruby\jruby-
1_1\lib\ruby\gems</param-value>
</context-param>

<I-- Alternatively
<context-param>
<param-name>gem.home</param-name>
<param-value>C:\projects\jruby\jruby-
1.1\lib\ruby\gems</param-value>
</context-param>-->

You can also set the gem.path in the startup parameters for the servlet
container:

$ java -jar start.jar etc/jetty.xml \
—Dgem.path=""C:\projects\jruby\jruby-1_1\lib\ruby\gems"

2.4.3. See Also

e Section 2.3"
2.5. Configuring the JRuby-Rack Servlet
2.5.1. Problem

You want to configure the number of JRuby runtimes in the container.

2.5.2. Solution

Edit the values in warble.rb to your desired settings:

config.webxml_jruby._min._.runtimes
config.webxml . jruby.max.runtimes

I
N

Generate the Rails WAR file:

$ jruby —-S warble war

2.5.3. Discussion

The JRuby-Rack servlet allows Rails to integrate into most Java EE
containers. Because many parts of Rails prior to version 2.2 are not
threadsafe, the runtime cannot be used to simultaneously process
multiple requests. JRuby-Rack utilizes a configurable pool of JRuby
runtimes that are dispatched for each incoming Rails request. The number
of simultaneous requests that can be processed is limited by the number
of available runtimes. Any additional requests will block and must wait for
a runtime to become free. It's highly advised that you set a maximum
number of runtimes for your production application because by default
Warbler will allow for an unlimited number of runtimes. These are all the
configuration options:

config.webxm .jruby. max. runti nmes

This sets the most number of active JRuby runtimes in the pool,
which determines the maximum number of simultaneous
requests. Default value is unlimited.

config.webxm .jruby. mn.runtinmes

This determines the number of "warm" runtimes or the minimum
number of runtimes in the pool. It also dictates how many
instances when the application is started. The default value is
none.

config.webxm .jruby.runtinme.initializer.threads

This sets how many threads will be used to initialize the JRuby
runtimes in the pool. The value will vary based on the number of
runtimes you intend to use at startup and the initialization time
of the pool. The default value is 4.

confi g. webxm . jruby.runtine.tinmeout.sec

This sets how long in milliseconds an incoming request should
wait for a JRuby runtime before returning an error. The default is
30 seconds.

The CPU, memory, and system resources of the host machine generally
determine the number of maximum and minimum idle runtimes. The
JRuby runtime is a memory-intensive application, so it is recommended to
run the application with a generous amount of both permanent generation
(PermGen) and heap memory. This is especially true when using a large
number of runtimes.

NOTE

Developers who are upgrading from an early version of Warbler and using
the GoldSpike servlet can continue to use their existing warble.rb file to
configure the JRuby pools. The JRuby-Rack adapter supports the legacy
GoldSpike configuration values, but you're advised to update your

configuration to JRuby-Rack parameters because it's possible this support
will be eliminated in later releases.

2.5.4. See Also

e Section 2.3"

2.6. Packaging Rails with a JNDI DataSource
2.6.1. Problem

You want to configure your Rails application to access a JDBC DataSource
through Java Naming and Directory Interface (JNDI).

2.6.2. Solution

Install the acti ver ecord-j dbc- adapt er gem (as in Section 2.2) and edit
your database.yml file. The JNDI lookup service is provided by

the j dbc adapter gem. Set the dri ver value to your database's

JDBC Dri ver class and add the JNDI location of the JDBC DataSource.
This example database.yml file is configured to use a JDBC factory for a
MySQL database:

devel opnent :
adapter: jdbc
jndi: java:conp/env/jdbc/rails_db
driver: comnysqgl.jdbc.Driver

Use Warbler to package your Rails application (see Section 2.3). Edit
your warble.rb file and set the resource reference name of your JNDI
DataSource in the configuration file:

JNDI data source nane
config.webxm .jndi = "jdbc/rails_db'

Repackage the WAR by running Warbler's war task:

$ jruby —S warbl e war

2.6.3. Discussion

The war or war : webxm tasks create or overwrite an existing Java EE web
deployment descriptor file, /WEB-INF/web.xml, in your Warbler staging
area, tmp/war. Both tasks add the r esour ce- r ef definition and all the
required information for a new JDBC DataSource. Here is an

example web.xml for Rails application using a JNDI DataSource
referenced at j dbc/rail s_db:

<resource-ref>
<res-ref-nanme>jdbc/rail s_db</res-ref-nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>

You always have the option of manually editing the files and values
generated by Warbler. If you choose to edit the web.xml descriptor file by
defining new DataSources or setting configuration values or references,
you can use Warbler's war : j ar task to skip the file generation steps and
package all the files in the staging folder into the application WAR file:

$ jruby —S warble war:jar

2.6.4. See Also

e Section 2.3"

2.7. Deploying Rails on Tomcat
2.7.1. Problem

You want to deploy a Rails Java EE application using Apache Tomcat.

2.7.2. Solution

Package your Rails application as a Java EE WAR (see Section 2.3). Place
the resulting WAR file in the Tomcat's webapps directory. If you are using
one of the database-specific JDBC adapter gems, you're ready to start
Tomcat. If your Rails application is using the regular j dbc adapter,
include the JDBC adapter's JAR file in your classpath or copy the JAR file
into$ TOMCAT_HOME/common/Iib.

Be sure to set the JAVA HOME environment variable to the folder where
you've installed Java. A performance tip is to start Tomcat with the -
server flag. It is also advisable to set constraints for the heap and
PermGen so potential memory leaks do not consume all the resources on
the server and cripple the machine.

2.7.2.1. Windows

> set JAVA HOME=c:\Program Fil es\Java\jdkl1l.5.0 12

> set CATALI NA OPTS=-server —-Xns512m —Xnx1024m - XX: Per nSi ze=256m
\

—XX: MaxPer nS5i ze=512m
> catalina. bat start

2.7.2.2. Linux and OS X
$ export JAVA HOVE=/usr/javal/jdkl.5.0_12
$ export CATALI NA OPTS='-server —Xns512m —-Xmx1024m -
XX: Per n5i ze=256m
—XX: MaxPer nti ze=512ni
$./catalina.sh start

2.7.3. Discussion

NOTE

It is important to understand JRuby's memory usage so that you can
properly tune your applications. The JVM has separate memory spaces.
One, known as permanent generation (PermGen), is reserved for internal
class file representations and VM data structures. The other, heap, is the
more commonly known and is typically used to store the data represented
in those classes. A lot of JRuby success is owed to the ability to work
around the rules of a statically compiled language (i.e., Java) by
generating classes and data structures at runtime. The cost of this
approach is that in some cases JRuby may need to generate a large
number of objects and these objects are all stored in the permanent
generation space and not the heap. Consider the case of Rails, where a
single request could generate hundreds of JRuby objects. This usage of
PermGen is many times the default case, so the default VM memory
setting is often insufficient. The JRuby team has made strides in
alleviating the problem, such as allowing JRuby runtimes to share
PermGen space, but you should take a cautious approach by setting initial
and maximum values for your PermGen and heap, especially for
production applications.

If you are using Tomcat with a JNDI DataSource, then start by packaging
your Rails application (see Section 2.3). Navigate to the WAR's staging
area, tmp/war, and add the context.xml file to the META-INF folder.
Create the folder if it does not already exist. Example 2-5 shows how you
would define a resource in context.xml to access a MySQL database. The
resource definition includes the database connection information, the
resource's JNDI name, and the context path of this application, which will
match the beginning of the request Uniform Resource Identifier (URI) of
your web application.

Example 2-5. Tomcat context.xml JNDI configuration

<Cont ext path="/MKillerApplication"
docBase="MKi | | er Appl i cati on"
debug="5" rel oadabl e="true" crossContext="true">

<Resource nane="j dbc/rails_db" aut h="Contai ner"
type="j avax. sql . Dat aSour ce"
maxAct i ve="100" maxl| dl e="30" maxWai t="10000"
user nanme="r oot" password="password"
dri ver d assNane="com nysql . j dbc. Dri ver"
url ="jdbc: mysql://1ocal host: 3306/ rubycookbook devel oprment ?aut oRe
connect=true"/>

</ Cont ext >

The resource could have also been defined

in $TOMCAT_HOME/conf/server.xml, but that approach is discouraged by
the Tomcat authors since it applies to all the web applications. Packaging
the resource in the web application makes sense both because it reflects
good code organization and because it allows you to redefine and update
the DataSource by redeploying the self-contained web application and
avoid restarting the server.

Rebuild the WAR using war bl e, move your application to the deployment
folder, and start the server using the information provided in the solution.

2.7.4. See Also

e Section 2.3"
e Section 2.6"

2.8. Deploying Rails on JBoss
2.8.1. Problem

You want to deploy a Rails application on the JBoss Application Server.

2.8.2. Solution

Package your Rails application as a Java EE WAR (see Section 2.3). Copy
the application WAR into $JBOSS_HOME\server\default\deploy, the
default JBoss deployment folder, or any server-specific deployment
directory you have defined in the JBoss configuration files. If you are
using the non-database-specific j dbc adapter for connecting to your
database, be sure to include the JDBC JAR in the classpath. You can also
copy the JDBC JAR into $JBOSS HOME\server\default\lib if you're running
the default server.

Be sure to start the application server with the —server flag and set some
expected size for your heap and permanent generation, PermGen,
memory space. Typically this is done through theJAVA OPTS environment
variable.

2.8.2.1. Windows

> SET JAVA HOME=c:\ Program Fil es\ Java\jdkl1l.5.0_12

> SET JAVA OPTS=-server —-Xms512m —Xmx1024m - XX: Per n5i ze=256m —
XX: MaxPer nSi ze=512m

> run. bat

2.8.2.2. Linux and OS X

$ export JAVA HOVE=/usr/javal/jdkl.5.0_12

$ export JAVA OPTS='-server —-Xms512m —Xmx1024m - XX: Per nSi ze=256m
—XX: MaxPer nSi ze=512m

$./run.sh

2.8.3. Discussion

If you are using a JNDI resource for your Rails database connection, you
will need to create the DataSource in the JBoss server. The JBoss
distribution provides sample DataSource configurations for most of the
popular databases in the examples

folder, $JBOSS_HOME\docs\examples\jca. This a great starting place for

simple database setups. After you have edited the file, you can easily
deploy a DataSource in JBoss by placing the file in the deployment
directory. $JBOSS_HOME\server\default\deploy is the deployment folder
for the default server.

If you're running a MySQL database, change the <j ndi -

nane>MySql DS</ j ndi - name> configuration parameter to the name of your
DataSource, rai |l s_db in this example. Set the rest of database
information in the configuration file with the appropriate values for your
database. Example 2-6 shows an edited mysql-ds.xml| DataSource
definition for the example application. Note that thej ndi - nane does not
include the j dbc prefix. Copy the mysqgl-ds.xml file to your deployment
directory.

Example 2-6. Sample mysql-ds.xml JBoss DataSource
configuration file

<dat asour ces>
<l ocal -t x- dat asour ce>
<j ndi - nane>rai | s_db</j ndi - nane>
<connection-url >
jdbc: nysql ://1 ocal host: 3306/] rubycookbook devel opnent
</ connection-url >
<driver-class>com nysql .jdbc. Driver</driver-class>
<user - nanme>r oot </ user - nane>
<passwor d>passwor d</ passwor d>
<connecti on-property name="aut oReconnect" >t rue</connecti on-
property>
<!-- Typemapping for JBoss 4.0 -->
<net adat a>
<t ype- mappi ng>nySQL</ t ype- mappi ng>
</ met adat a>
</l ocal -t x- dat asour ce>
</ dat asour ces>

Even though you have defined the DataSource, you still need to map
between this resource and the web application. This binding information is
defined in the jboss-web.xml file and packaged along with your web
application. Warbler does not generate this file, so you will need to create
the jboss-web.xml file in the WEB-INF directory of Warbler's staging

area, tmp/war, as in Example 2-7.

Example 2-7. Sample JBoss deployment descriptor

<j boss- web>
<cont ext-root >/ MyKi | | er Appl i cati on</ cont ext -r oot >
<resource-ref>
<res-ref-name>jdbc/rail s_db</res-ref-nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<j ndi - name>j ava: rai |l s_db</j ndi - nane>
</resource-ref>
</j boss-web>

You can configure your DataSource to be the default DataSource for the
JBoss server by naming it Def aul t DS and removing the default
DataSource included with the JBoss
installation,$JBOSS_HOME/server/all/deploy/hsqgldb-ds.xml.

2.8.4. See Also

e Section 2.3"
e Section 2.6"

2.9. Deploying Rails on Jetty
2.9.1. Problem

You want to deploy a Rails application on the Jetty Servlet container.

2.9.2. Solution

Package your Rails application as a Java EE WAR (see Section 2.3). If
you've defined a JDBC connection with the j dbc adapter or using a JNDI
DataSource, remember to include the JDBC adapter in your classpath or
copy the JAR into $JETTY_HOME/lib to make it available to any deployed
web applications. Place the WAR into

Jetty's $JETTY_HOME/webapp folder. Start the server with the —

server VM option and default heap and PermGen values:

$ java -server —Xnme512m —Xnx1024m - XX: Per nSi ze=256m —
XX: MaxPer nSi ze=512m
-jar start.jar etc/jetty.xnl

2.9.3. Discussion

If you would like to use a JNDI resource for your Rails database
connection, start by defining a DataSource in your WAR. Create a file
called jetty-env.xml in the WEB-INF folder of your staging area. Example
2-8 shows a jetty-env.xml configuration for a MySQL database.

Example 2-8. Sample jetty-env.xml file

<?xm version="1.0"?7>
<I DOCTYPE Configure PUBLIC "-//NMort Bay Consulting//DTD
Confi gure// EN'

"http://jetty. nortbay. org/ configure. dtd">

<Configure class="org. nortbay.jetty. webapp. WbAppCont ext ">

<New i d="rail s_db"
cl ass="org. nortbay.jetty. plus. nan ng. Resour ce" >
<Arg>j dbc/ rail s_db</ Arg>
<Ar g>
<New
cl ass="com nysql .jdbc.jdbc2. optional. Mysqgl Connecti onPool Dat aSour c
e">
<Set
nanme="Ur | ">j dbc: nmysql : / /| ocal host: 3306/ j r ubycookbook devel opnent <
/ Set >
<Set nane="User" >root </ Set >
<Set nane="Passwor d" >passwor d</ Set >
</ New>
</ Arg>
</ New>
</ Confi gure>

Repackage your application with Warbler and deploy to Jetty. Jetty's JNDI
module is not enabled in the standard webapps deployment folder by
default, so either update$JETTY_HOME/etc/jetty.xml to enable JNDI for
this directory or configure Jetty to use an alternative directory. It is the
Jetty convention to install applications that require JNDI into

the webapps-plus directory:

$ copy MyKill erApplication.war $JETTY_HOVE/ webapps- pl us

Jetty supplies a convenient $JETTY_HOME/etc/jetty-plus.xml file, which
configures Jetty to use that folder. Run this command from the Jetty
home directory to start Jetty with JNDI support:

$ java -server —Xnms512m —Xnx1024m - XX: Per n5i ze=256m —
XX: MaxPer nSi ze=512m —j ar\
start.jar etc/jetty.xm etc/jetty-plus.xm

2.9.4. See Also

e Section 2.3"
e Section 2.6"

2.10. Deploying Rails with jetty rails
2.10.1. Problem

Many Rails developers today have never worked with the Java EE
packaging process and launch their applications by navigating to the top
level of their Rails project and starting one of two popular Ruby web
servers: Mongrel or WEBrick. You want to run the Jetty application server
with your Rails application but use a deployment method more familiar to
Rails developers.

2.10.2. Solution

Use the jetty rail s gem, which allows you to run a Rails application
with the Jetty server without performing any Java EE packaging. First,
install the jetty _rails gem:

jruby —-S geminstall jetty rails

Then, go to the top of your Rails application and start the Jetty server:

$ cd jrubycook_application
$jruby -Sjetty rails

2.10.3. Discussion

You can get a list of some common startup parameters by running this
command:

jruby =S jetty rails --help

The port and envi r onnment options are common startup parameters used
in the Mongrel and WEBrick HTTP servers:

e Passin the --port <port> or—p <port> parameter to set the port
of your web application. The default is 3000.

e Use the --envi ronment <env> or —e <env> to specify the Rails
execution environment. The default value is devel opnent .

e Set the --cont ext-path <pat h> or —u <pat h> parameter to
change your applications context root. Remember to make your
Rails application aware of this change by adding this line of code to
your environment.rb file:

ActionController:: Abstract Request.relative_url_root =
"/ my_new context _root"

e Use the —c or - - confi g parameter to load the server configuration
through an external file. The server will look in the default
location, config/jetty_rails.yml, if you do not include a file path.

The configuration file is valuable beyond the organizational benefit of
getting the startup parameters out of the input arguments. As of version
0.6, you can use the file to tune your application by setting JRuby and
Jetty configuration values, leverage a powerful layered configuration
system, and run multiple Rails applications within a single Jetty instance.

Example 2-9 demonstrates some of these features by configuring several
Rails applications, each in its own context, through

individual cont ent _pat h definitions as well as a port definition. The
default parameters are set at the end of the file and optionally overridden
within the configuration section for each application. Note in the example
how the development applications override the number of initial runtimes
from five to two.

Example 2-9. Sample jetty rails.xml configuration file

. servers:
- .context _path: /dev-one
:adapter: :rails

:environnent: devel opnent

: base: devel opnment-dir
sport: 3000
sjruby_initial _runtines: 2
- :context_path: /prod-one
»adapter: :rails
: base: production-dir
- port: 4000
:apps:
- .context_path: /dev-two
cadapter: :rails
. base: devel opnent-dir

;environnent: devel opnent
cjruby initial _runtines:

- :context path:

/ prod-two

. base:

production-dir

: adapter:
senvironnment:

crails
production

cjruby_initial _runtines:

5

2

Sjruby_max_runtimes: 10
:thread_pool _mn: 5
:thread_pool _max: 40
.acceptor_size: 20

These are some of the less familiar configuration options:

jruby initial _runtinmes
Specifies the number of JRuby runtimes that will be created on

startup. Note that there are separate runtime pools for each
application context.

j ruby_max_runti nes

Sets the maximum number of runtimes in the pool and limits the
number of simultaneous Rails requests.

t hread_pool _nin

Sets the initial size of the pool of request-handling threads.

t hr ead_pool _nmax

Sets the maximum size of the pool of request-handling threads.

acceptor_size

Sets the number of acceptors for Jetty's Java NIO-
based Sel ect Channel Connect or .

2.10.4. See Also

o Jetty-Rails website, http://jetty-rails.rubyforge.org

2.11. Deploying Rails with Mongrel
2.11.1. Problem

You want to run a JRuby on Rails application with Mongrel.

2.11.2. Solution

Install the Mongrel gem. The JRuby gem installer should select the latest
Java version of the gem:

$ jruby -S geminstall nongrel —-no-ri —-no-rdoc
Updating netadata for 165 gens from http://gens. rubyforge.org

conpl ete

Successfully installed gemplugin-0.2.3
Successfully installed nongrel-1.1.4-java
2 gens installed

Include the JDBC adapter of your database in your classpath if you aren't
using the database-specific] dbc adapter that packages and loads the
driver. Go to your Rails application's home directory and start Mongrel:

$ jruby —S nongrel _rails start

** Starting Mongrel listening at 0.0.0.0:3000

** Starting Rails with devel opnent environnent. ..

** Rails |oaded.

** Loading any Rails specific GenPl ugins

** Signals ready. TERM => stop. USR2 => restart. |INI => stop
(no restart).

** Rails signals registered. HUP => reload (w thout restart).
It might not wor

k well.

** Mongrel 1.1.4 available at 0.0.0.0:3000

** Use CTRL-C to stop.

2.11.3. Discussion

Mongrel is a small but high-performance web server originally written in
Ruby and C. Recently, the C portions have been ported to Java so that
Mongrel can run under JRuby. This was an important milestone for the
project given that many Rails developers use Mongrel in their production
and development environments.

There is an experimental gem to provide clustering support for the Java
version of Mongrel called nongr el _j cl ust er . Unfortunately, this gem is
currently only supported on Linux, OS X, and Cygwin on Windows. The
default Windows DOS shell is currently not yet supported. This gem
allows you easily start and stop sets of Mongrel servers and attempts to
recreate some of the functionality of nongr el _cl ust er, which is
incompatible with JRuby. First, install the gem:

$ jruby -S geminstall nongrel jcluster
Successfully installed nongrel jcluster-0.0.1
1 geminstalled

Next, generate a configuration file for your Mongrel cluster:

$ jruby -S nongrel _rails jcluster::configure -p 4000 -N 3 -e
devel opnent -R 20202\

-K thesecret key
Witing configuration file to config/nongrel jcluster.ym.

The new file in config/mongrel_jcluster.yml allows you to set the starting
port number of the servers of the —p flag, the number of instances with —

N, and the runtime environment of the cluster with the —e flag.

Start your Mongrel cluster with this command:

$ jruby -S nongrel _rails jcluster::start
Starting JRuby server...
Starting 3 Mongrel servers...

Open your browser to http://localhost:4000, http://localhost:4001,
and http://localhost:4002 to verify that your cluster has properly started.
You can stop the cluster with this command:

$ jruby -S nongrel _rails jcluster::stop
St oppi ng 3 Mongrel servers...

2.12. Deploying Rails on the GlassFish v2
Server

2.12.1. Problem

You want to deploy a Rails application on the GlassFish v2 application
server.

2.12.2. Solution

Install the GlassFish server and navigate to the home directory. Set up
the deployment area and configure the server with the supplied ant task:

$ $GLASSFI SH HOVE/ | i b/ ant/bi n/ant -f setup.xmn

This will install several libraries and create your Java EE application
deployment folder at $GLASSFISH_HOME\domains\domainl\autodeploy.
Package your Rails application as a Java EE WAR (seeSection 2.3). If
you've defined a JDBC connection with the j dbc adapter or using a JNDI
DataSource, remember to include the JDBC adapter in your classpath or
copy the JAR file into$GLASSFISH_HOME/Iib to make it available to your
web applications.

Start the server with this command:

$ $GLASSFI SH HOVE/ bi n/ asadmi n start-domain

Wait a few seconds after the server starts to allow enough time to deploy
your Rails WAR (Figure 2-2).

Figure 2-2. Starting up the GlassFish server

CAWINDOWS\system 3 2emd. exe

:~glassfishrbinsasadmin start—domain
Starting Domain domainl, please wait.
Log redirected to Cinglassfishsdomainssdomainlslogssserver.log.
Redirecting output to GC:rglassfishsdomains/domainl-logs-server.log
Domain domainl is ready to peceive client requests. Additional sewrvices are bein
g started in background.
Domain [domainll is running [Sun Java System Application Server 9.1_@1 <(build b8
9d—fc=>] with its configuration and leogs at: [C:inglassfishsdomainsz].

Admin Console is available at [http:/~<localhost:48481.

se the same port [4848]1 for "asadmin' commands.

ser weh applications are available at these URLs:

[http:/ localhost 8888 https:-~localhost:8181 1.
Following web—contexts are availahle:

[Awebl ~__uwstx—services 1.
Standard JME Clients (like JConsole) can connect to JMEEServicelRL:

[service: jmx:rmi: /7~ jndi rmi:/ hh?a5h:8686-jmxrmil for domain management purpose

Hamain listens on at least following ports for connections:
[86868 8181 4848 3700 3828 3928 8686 1.
Domain does not support application server clusters and other standalone instanc

5.

tnglassfishl>

Open your browser to http://localhost:8080/MyKillerApplication to view
your Rails project.

2.12.3. Discussion

Rails applications that use a JNDI DataSource can use

the asadm n command with input parameters to define the DataSource's
properties. This example creates a connection pool for a MySQL server at
our standard example address j dbc/rail s_db:

$ $G.ASSFI SH HOVE\ bi n\ asadm n creat e-j dbc-connecti on-pool -
dat asour cecl assnanme \
com nysql . jdbc. jdbc2. optional . Mysql Connecti onPool Dat aSour ce \
--restype javax.sgl . Dat aSource —property
User =r oot : Passwor d=passwor d: \
URL=j dbc\: mysqgl\:/ /I ocal host: 3316/] r ubycookbook_devel opnent
jdbc/rails_db
Command creat e-j dbc- connecti on- pool executed successfully.

Next, make the new DataSource available to your Rails WAR and other
Java EE applications installed on the server:

$ $G.ASSFI SH HOVE\ bi n\ asadnmi n create-jdbc-resource --
connecti onpoolid \

jdbc/rails_db jdbc/rails_db
Command creat e-j dbc-resource executed successfully.

2.12.4. See Also

e Section 2.13"

2.13. Using the GlassFish v3 Gem
2.13.1. Problem

You want to run a Rails application with the GlassFish v3 gem.

2.13.2. Solution

First, install the GlassFish v3 gem:
$ jruby -S geminstall glassfish

Successfully installed gl assfish-0.1.2-universal-java
1 geminstalled

Start your Rails application with the new gl assfi sh_rai |l s command.
You currently have to start the server in the directory that contains your
Rails application directory:!

[41 1t is likely this will be changed in future releases.

$ jruby -S glassfish_rails MKillerApplication

Open your browser to http://localhost:3000 and you should see the Rails
welcome screen.

2.13.3. Discussion

The GlassFish v3 server is Sun's latest effort to build a widely adopted
Java EE server. They have packaged this server as a Ruby gem and
configured it to run Rails with a few simple commands.

The gem implements a pool of JRuby runtimes that work a lot like the
pooling used in the GoldSpike servlet. You can set the number of JRuby
runtimes in the pool by using the —n or the - -runti nmes flag when starting
the server. The following examples will start up servers with three
runtimes in each pool:

$ jruby -S glassfish_rails MyKillerApplication —n 3

or:

$ jruby -S glassfish_rails MKillerApplication —runtinmes 3

2.13.4. See Also

e Section 2.12"

2.14. Using ActiveRecord Outside of Rails
2.14.1. Problem

You want to use ActiveRecord as the Object-Relational Mapping (ORM)
solution for a non-Rails application.

2.14.2. Solution

If you have not installed Rails, install the acti verecord gem:

$ jruby -S geminstall activerecord --no-ri --no-rdoc

Install the acti ver ecord-j dbc- adapt er gem, which will provide access
to the database through a JDBC connection:

$ jruby -S geminstall activerecord-jdbc-adapter --no-ri --no-
rdoc

Include your database's JDBC adapter in your classpath or

JRuby lib folder if you're not using a database-specific adapter. For
example, to connect to a MySQL database, you will need

theacti verecord-j dbcnysql - adapt er gem. See Section 2.2 for
more information about database-specific drivers and gems.

$ jruby -S geminstall activerecord-jdbcnysql -adapter --no-ri --

no-rdoc

Create a YAML file called database.yml such as the one in Example 2-
10 to define your database connection parameters.

Example 2-10. Sample database.yml file

devel opnent :
adapter: jdbcnysql
dat abase: |jrubycookbook devel oprment
host: 1 ocal host
port: 3306
user nane: root
password: password

Once this setup is in place, you can load the file and establish a
connection to one of the databases defined in it. In Example 2-11, we
load the devel opnent database defined in the configuration file

from Example 2-10. Once the database connection has been established,
we run a query and iterate through the results. Finally, we utilize one of
the dynamic finder methods that are attached to objects by the
ActiveRecord framework.

Example 2-11. Loading a database.yml file and accessing the
database

require 'rubygens'

gem ' activerecord-jdbcnysql -adapt er’
require 'active_record'

require 'yanl'

@onnections = YAM..l oad_fil e("database.ym")
Acti veRecord: : Base. establ i sh_connecti on(@onnecti ons["devel opnent

"1)

stm = "select id, title from ganes”
@al = ActiveRecord::Base.connection.select_all(stnt)
@al . each do | g|
puts "game id: #{g["id"]} #{g["title"]}"
end

cl ass Gane < ActiveRecord: : Base
end

puts "found gane id: #{ Gane.find(1).id}"

This is the output of the program:

$ jruby ganes.rb
game id: 1 Alien Invasion
| ooking up gane id: 1

2.14.3. Discussion

JRuby's j i r b interactive console is a wonderful environment to prototype
and test application code. Running j i r b with our example program gives
you an interactive session with the database (Figure 2-3).

Figure 2-3. jirb session using ActiveRecord and a JDBC
connection

e CAWINDOWS\system32\emd.exe - jirb -r games. i

swprojectshjrubycookbooksexamplesschap2sactiverecord—direct>jirh —r» games.rh
ijame id: 1 Alien Invasion
looking up game id: 1
irb{main?:P01 8> Game.create(:title=>"Mew Game'>
= #<Game id: 2, title: "Mew Game'>
irb{main?>:AA2:@> Game.find(:all>
=» [H<Game did: 1. i : "Alien Invasion'», #<{Game id: 2, title: ""Mew Game'>]
irbhb{main>:B@3: -

2.15. Accessing Common Java Servliet
Information

2.15.1. Problem

You want to access the Java servlet request object from your Rails
controllers.

2.15.2. Solution

JRuby-Rack’s servlet filter makes several servlet variables available to the
Rails application on each incoming request. Access the

standard j avax. servl et. Servl et Request through the Rack environment
map with the key j ava. servl et _request. The Ser vl et Cont ext object
can also be fetched through the Rack environment hash with

the java.sllelrllvlllet context key, or through the global

variable, $servl et _cont ext. Example 2-12 shows a controller that uses
some of these variables.

Example 2-12. Accessing the Java serviet objects from a Rails
controller

class Hell owbrl dController < ApplicationController
def hello
ctx = request.env|['java.servlet _context']
puts "server info: #{ctx.server _info}"
puts "server info: #{$servlet_context.server_info}"

req = request.env['java.servlet_request']

puts "uri: #{req.request_uri}"

puts "query string: #{req.query_string}"

puts "port: #{req.server_port}"

puts "param hell o: #{req.get paraneter("hello")}"
puts "session id: #{req.get_session.id}"

end
end

Accessing http://localhost:3000/MyKillerApplication/hello?hello=world wo
uld output these messages to the container's log file:

server info: jetty-6.1.9
server info: jetty-6.1.9
uri: /hello_ world/hello
query string: hello=world
port: 3000

param hell o: world
session id: 2026

2.15.3. Discussion
JRuby-Rack does not provide access to the Ser vl et Response object from
within your controller. This feature was available in earlier versions of

Warbler through the GoldSpike servlet but has been removed after the
integration of JRuby-Rack.

2.15.4. See Also

e Section 2.5"

2.16. Configuring Session Storage
2.16.1. Problem

You want to configure the session storage mechanism used by your Rails
application.

2.16.2. Solution

Edit the web.xml file in your web application and set
the j ruby. sessi on_st or e context parameter to db by adding this bit of
code:

<cont ext - par an

<par am name>j r uby. sessi on_st or e</ par ant name>

<par am val ue>db</ par am val ue>

<l-- This value really neans let Rails take care of
session store -->
</ cont ext - par anp

2.16.3. Discussion
By default, JRuby-Rack's servlet filter uses the Java EE servlet container's

session storage. Changing the j r uby. sessi on_st or e context parameter
to db tells JRuby-Rack to defer to Rails's session management.

2.16.4. See Also

e Section 2.3"

2.17. Controlling the Classes, Directories,
and Other Files Packaged into a Rails WAR
File

2.17.1. Problem

There are classes and other files you want to include and/or exclude from
your WAR file.

2.17.2. Solution

Open the Warbler configuration file config/warbler.rb and validate these
configuration options:

Application directories to be included in the webapp.
config.dirs = % app config |ib | og vendor tnp)

Additional files/directories to include, above those in
config.dirs
config.includes = FileList["db"]

Additional files/directories to exclude
config.excludes = FileList["lib/tasks/*"]

Additional Java .jar files to include. Note that if .jar files
are pl aced

#in lib (and not otherw se excluded) then they need not be

nmenti oned here

JRuby and JRuby- Rack are pre-loaded in this |ist.

Be sure to include your own versions if you directly set the
val ue

config.java_libs += FileList["lib/java/*.jar"]

Loose Java cl asses and mi scel |l aneous files to be placed in WEB-
I NF/ cl asses.
config.java_classes = FileList["target/cl asses/**.*"]

One or nore pat hmaps defining how the java classes should be
copied into

WEB- | NF/ cl asses. The exanpl e pat hmap bel ow acconpani es the

j ava_cl asses

configuration above. See

http://rake. rubyforge. org/classes/ String. ht M #M)00017

for details of how to specify a pathnap.

confi g. pat hmaps. java_cl asses << "%target/cl asses/,}"

2.17.3. Discussion

By default, Warbler will include the JRuby runtime and JRuby-Rack in the
WAR files it produces. There are some cases where you might prefer to
install these JARs in a shared library area rather than packaging the JAR
files with each web application. The shared packaging approach can
accomplish this, but some developers may want a mixed approach, in
which the packaged WAR file includes dependent gems but not the JRuby
runtime and the JRuby-Rack servlet. The confi g.java_l i bs property

is simply a Ruby array, so you can use well-known array operations to
exclude items from Warbler's build process. For example, you can use
the rej ect! method with a regular expression to exclude all versions of
JRuby and JRuby-Rack from the final WAR file:

config.java_libs.reject! {|lib] Iib =~ /jruby-conplete|jruby-
rack/ }

If you're changing these configuration values, it is recommended that you
run Warbler's war : cl ean task between builds to prevent files from being

accidentally included into your WAR. This is especially the case if you are
experimenting with the exclusion rules.

2.17.4. See Also

e Section 2.3"

2.18. Changing the Name of the WAR File
and the Staging Area

2.18.1. Problem

You want to change the name of the WAR file and/or Warbler's staging
area.

2.18.2. Solution

By default, Warbler will name the generated WAR file according to the
Rails application’s directory name. You can customize the name by setting

the confi g. war _nane parameter in yourconfig/warbler.rb configuration
file:

Nane of the war file (without the .war) -- defaults to the
basenamne

of RAILS ROOT

config.war_nanme = "mywar"

You may also want to modify the staging folder that contains the
decompressed source files for the final WAR. In warbler.rb, set
the confi g. st agi ng_di r to your target staging folder:

Tenporary directory where the application is staged
config.staging dir = "tnp/war"

2.18.3. See Also

e Section 2.3"
e Section 2.19"

2.19. Deploying a Rails Application to the
Root Context

2.19.1. Problem

You want to make your Java EE web application available from the root
context of the servlet container.

2.19.2. Solution

In general, the simplest approach is to package your Rails application
with the name ROOT.war. This can be configured using the Warbler
configuration file, warble.rb:

confi g.war_nanme = "ROOT"

Before deploying this WAR file, be sure to remove any existing directories
named ROOT or ROOT.war files from your container's deployment
directories.

2.19.3. Discussion

Although not actually part of the Java EE standard, using a filename

of ROOT.war to indicate to the servlet container that you want this
application to be deployed in the root context is a widely used convention.
Each container defines a custom deployment descriptor. We've seen
examples of these descriptors in previous recipes. If you are using JNDI
DataSources, you will need to modify the deployment descriptors to
match the context name.

2.19.3.1. Tomcat

Edit the context.xml file in the META-INF directory in your staging area
(see Section 2.8). Set the pat h and docBase attributes to / (Example 2-
13). Warbler does not create this file by default so you will have to create
it yourself and repackage the WAR.

Example 2-13. Changing the context path for a Tomcat
deployment

<Cont ext path="/" docBase="/" debug="5" rel oadabl e="true"
crossContext="true">

<Resour ce nanme="jdbc/rails_db" auth="Contai ner"
type="j avax. sql . Dat aSour ce"
maxActi ve="100" maxl dl e="30" nmaxWai t="10000"
user nanme="r oot" password="password"
driverd assNane="com nysql . jdbc. Driver™
url ="jdbc: nysql :/ /1 ocal host: 3306/] rubycookbook devel oprment ?aut oRe
connect=true"/>

</ Cont ext >

2.19.3.2. JBoss

Edit the jboss-web.xml file in the WEB-INF directory in your staging area
(see Section 2.9). Change the cont ext -r oot value to/ (Example 2-14).
Warbler does not create this file by default so you will have to create it
yourself and repackage the WAR.

Example 2-14. Changing the context path for a JBoss
deployment

<j boss-web>
<cont ext - r oot >/ </ cont ext - r oot >
<resource-ref>
<res-ref-nanme>jdbc/rails_db</res-ref-nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<j ndi - name>j ava: rai | s_db</j ndi - name>
</resource-ref>
</j boss-web>

2.19.3.3. Jetty

Edit the jetty-web.xml file in the WEB-INF directory in your staging area
(see Section 2.10). Add the configuration in Example 2-15. Warbler does
not create this file by default so you will have to create it yourself and
repackage the WAR.

Example 2-15. Changing the context path for a Jetty
deployment

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>
<! DOCTYPE Configure PUBLIC "-//NMort Bay Consulting//DTD
Confi gure// EN'
"http://jetty. nortbay. org/configure.dtd">
<Configure class="org.nortbay.jetty. webapp. WbAppCont ext ">
<Set nane="cont ext Pat h" >/ </ Set >
</ Conf i gur e>

No configuration changes are necessary to allow Jetty to find your JNDI
DataSource.

2.19.4. See Also

e Section 2.7"
e Section 2.8"
e Section 2.9"
e Section 2.18"

2.20. Creating a Rails Application with
Aptana Studio

2.20.1. Problem

You want to create a Rails application using Aptana Studio.

2.20.2. Solution

Download and install the Aptana Studio software from the Aptana
website, http://www.aptana.com/download. Open the Aptana start page

at Help Aptana Studio Start Page and scroll to the RadRails
information in the Plugins column. Click on the Install button on the start
page and complete the installation wizard. You can also install the plugin
by selecting the RadRails item in the Plugin Manager, located in a tab in
the bottom frame, and clicking on the installation icon. Both options are

shown in Figure 2-4.

Figure 2-4. Aptana Studio: RadRails installation options

-] Aptana - Aptana Start Page - Aptana Stodio Community Edition

fi= Edit Newvigate Segrch Project Bun Sonpts Window Help
- s o CEID- B-0-Q- 4 . ’ m B
References | O | (3} aptana Start Page * O g% out... . | =0
FnTFSN ; @
S {} aptana
+ Fils Refarances e
b Gobal References ~ -~
Aptana Jaxer " PHP Entering a Trial
S Fie 1 |Project laxer is the T License:
. b plana
,:C::;et mial support adds
X Apkares Ajase Bl “HF colorizatian 1. O ente
u* e Server and contert
" deinverng an end-to-end nes
) o 2, Yo b prompted
o Ajax salution. Jaxer is & install to dowrload the
& ‘_'J Adminestrator on HHESASH free and open-source . Aptana Studio
(just hkce Aptana Studic) Ly
- ?-* My Wstvwork Places and allows developers to . . s ..-e::lol:\l e th
8 (3 Desiecp writa antire spps and Ruby on Rails upgrade. Fosom the
%5 Project Shortouts Dresel:'.ahcn_lavers Aptana rectar Antans
@ Fe using A]::-'. e Jaxes W gl madrails, now Studio.
;ﬂ:.le" el d " e Congratulaticns! Yau
l‘?"”:"E NEBtROF and tons 1.0, 1= an will gae the new
of teoks for Jaxer environment for building features added to
development are all
" Ruby on Rails the interface.
included in Aptana apahaitions, Bt
Sl 1.1 showcases a number of
tures bo make both
1. @ upgrade ta yeur Ruby and yeur P_ur‘:hase Pro
Aptana Studio 1.1 by :'_J:qu;': 'Z";': e License:
sebucting the Help P = P :
menu and then
install ' & & license
sebect Check: far f} ™ or Actana Etud e
1m5mcms«msm Qe X @D ¢ sob.. I |5a. |5 8
Irestall| Mlanage @ Hore.,, B ®
L] SN Rlassa Date Descriphion 2| @ Edtees o~
Aptana Internationalization Support 1.0.0 Larguage packs For Aptana nterface ®) Expermental Il
Aptana Radh als Rukry o) Rl suppecet & HIML
Aptana Radials Myhyn Connector 1.0.0 & connector for Myhm inbegeration e
Aptana Support For Adobes AIR 1.0.0 Bk deshkiiop A sppbcations ® D Javasoript
Aptana Support for Apple Phone 0.0 Enables Aptans Sudo to incresss your Phone.., ||| & [Profies -
Iry Fro

Aptana is built on the Eclipse IDE platform. As a result, the solution
from Section 1.12 should be followed to set up the JRuby runtime and
other common Eclipse configuration options. Once configuration is
complete, choose the RadRails perspective by clicking on the new

RadRails icon or select Other RadRails in the perspectives menu in the
top right corner of the window. Create your new Rails application by

selecting File New Rails Project in the menu. Give the project a
name and choose your database platform from the available options. Click
Finish, and RadRails will generate the files for your Rails application,
which are shown in the left Rails File Explorer window. The default wizard
settings will also create and start a Mongrel server instance. The editor
should be displaying the Aptana welcome screen shown in Figure 2-5.
Open the Rails database configuration file at config/database.yml in the
left Explorer window and edit the values for your database. You can start
and stop your Mongrel server by navigating to the Servers tab found in

the bottom center window. Select your Rails application in the list and use
the controls to start the server in regular or debug mode.

Figure 2-5. RadRails Interface and Welcome screen

£ Radails - Aptana RadRaiks - Aptana Studio Community Edition
Ele Edt Havigate Segrch Broject Scripts Bun Window Help

- CEEE - H-0-Q- 4 4 pd (- Bl EE AR R el |5
WP RubyEx.. D0 Testulnk — O {14 Aptana Start Page @ Aptana Racads | = 0 || 5 outne 1 @ =0
% - B & [Wapiiizr oo o] B [e ot st

=r,]::rCnand:£xa;r.uh)
S & i Welcome to Aptana RadRails

& g boot.rb
@ @ environment.rb , Aptama RadRails provides a nich and powerful user interface far creating Ruby
B g roures.ib -c applicabons. You can create projects, edit them with ease, and debug them w
(1] database.ym N tools. RadRails ships with an embedded jRuby nterpreter ready to go, or you ¢
=i LIRS s an external Rads installation.
B = doc
B - 3 -
5 1y Getting Started Exploring Rail
B = public
& soript Bebow is @ short introduction to using the functionality of
- test Aptana RadRails.
R b i i i Rails ste
& (= vendor About your application’s environment RadRails Coi
B Ruby Systam Libeary
W Cpopcsinbylniy-1l, Creating a simple application RadRals home
& m C:fprofectsfirublingry-1.1,
B W Ciprojedsirubylingny-1.1, 1. Make sure this project is selected in the Ruby Explorer wetlag
B Ciipropectaliubydingny-1.1, viawe and salart the anarstoes wies 3t tha hattnm Forums 1}
® B Cfprojectsfiubylingy-1.1| £ A

e P - ... x e Sexu h@@e- OO
B3 Rekstle [CodkbookEzample - Morgrel Server - (Apr 19, 2008 36HIM] e ey

| README => Pailes application starcing on heep://127.0.0, 153000
=> Call with -d to detach

= Ctrl-C to shutdown server

<] »

2.20.3. Discussion

The Rails Shell was introduced with RadRails version 1.0 and gives the
developer access to Rails commands through a command-line interface.
Choose the Console tab in the bottom panel or choose Open a Rails Shell
in the console options. The shell and the location of the options button are
shown in Figure 2-6. The Rails Shell complements the graphical interfaces
for performing common Rails tasks and brings the IDE more in line with
the Rails developers' preference of administering their application through
a shell interface. The Rails Shell allows you to execute generator scripts,
Rake tasks, and migrations, and create Rails projects and install gems
and plugins.

Figure 2-6. Aptana Rails Shell

= =

Servers | Generators | Rake Tasks Rails Plugins | RubyGems | 5 = |55 El_E s L= i i o
Rails Shell - ConokbookE xample L L Mew Console View
1 2 Open a Rails Shell

| : P | ——

2.20.4. See Also

e Section 1.12"

2.21. Accessing Static Files in Your Rails
Java EE Application

2.21.1. Problem

Warbler packages your Rails application by separating the static content
from the executable code and moving it into the top-level directory in the
WAR. This creates problems for some Rails functions such as r ender

:fil e because the file paths it is generating are now incorrect. You would
like your Rails application to serve static content in both a standard
deployment and when assembled using Warbler.

2.21.2. Solution

Add a hook into your Rails application by creating a public_dir.rb file in
the initializers directory. Evaluate the $ser vl et _cont ext variable, which
is only set when running in a Java EE environment, and set the location of
the public directory based on the existence of the variable. Example 2-
16 shows a technique for toggling the public directory.

Example 2-16. Public directory detection code

PUBLIC DIR = if defined?($servlet_context)
$servl et _context.getReal Path('/")
el se
"#{RAI LS ROOT}" + '/public'
end

Replace all the calls in your Rails code from render :file =>
"/public/data/jobs.log" torender :file =>
"#{PUBLI C_ DI R}/ data/jobs.|og".

2.21.3. Discussion

You will also need to patch Rails' internal functions that build paths to
static files. The render _optional _error _file in Acti onController can
be patched by adding the code in Example 2-17 to your

Rails application.rb file. A new module with patched method is mixed into
the original Acti onControl | er module at runtime.

Example 2-17. Patching functions that serve static files

nodul e Cookbook
nodul e Publ i cRescueExt ensi ons

pr ot ect ed
def render_optional _error_fil e(status_code)
status = interpret_status(status_code)

path = "#{PUBLIC DIR}/#{status[0,3]}.htm"
if File.exists?(path)
render :file => path, :status => status
el se
head st at us
end
end
end
end
ActionControl |l er:: Rescue. send :incl ude,
Cookbook: : Publ i cRescueExt ensi ons

2.21.4. See Also

e Section 2.3"

Chapter 3. Java Integration

Introduction

Executing Ruby from Java

Invoking JRuby Through the Bean Scripting Framework
Invoking JRuby Through Java Scripting Support
Logging from Ruby with Jakarta Commons Logging
Using the Java Concurrency Utilities

Creating JavaBean Style Accessor Methods

Writing Consistent Code

Transforming XML with TrAX

Creating a Pool of JRuby Runtimes

Performing Remote Management with JMX

Accessing Native Libraries with JRuby

3.1. Introduction

The first two chapters examined JRuby almost entirely from a Ruby-
centric perspective. In the next few chapters, we look at leveraging JRuby
more as a toolkit for Ruby and Java integration. There are two primary
integration approaches that we will explore in this chapter. The first is
how JRuby can be used to add functionality to a Java application; the
second is how Ruby programs can take advantage of the wide array

of preexisting Java libraries. Frequently, these types of integration are
combined. For example, when mixing Java and Ruby code, using a
consistent configuration for application logging can be useful, something
which is explored in Section 3.5.

There are three primary APIs for embedding Ruby into a Java application:
e The JRuby low-level API

e The Bean Scripting Framework (BSF)
e Java Scripting, defined by JSR 223

These APIs are the subject of the first three recipes in this chapter. The
differences between the low-level APl and either BSF or Java Scripting are
fairly obvious—the low-level API ties your Java code directly to JRuby,
whereas both BSF and Java Scripting are abstractions of the JRuby
runtime and, in fact, support multiple scripting languages. In general, you
will use the JRuby APl when you need tight control over the runtime's
configuration. The choice between BSF and Java Scripting is largely based
on deployment environment—BSF support is more consistent on Java 5,
whereas Java Scripting is only available as a backport.

Regardless of the mechanics, the value of using JRuby in this way
primarily stems from the fact that Ruby code is interpreted, not compiled.
This allows you to store Ruby code in a Java St ri ngobject and evaluate it
while your application is running. For example, a reporting application
could store the Ruby code necessary to generate a particular report in a
database. Another scenario would be to have an

application extensible through Ruby-based plugins that could be added or
removed while the application is running, something not typically
associated with Java applications. A similar technique has been used
extensively in gaming, most notably the popular, massive multiplayer
game World of Warcraft, which can be extended by users using the Lua
scripting language (even though the core is written in C++).

51 Obviously, great care must be taken when evaluating user-provided code in any
environment.

All of this power comes at a cost. The JRuby runtime, regardless of
whether you use the low-level API, BSF, or Java Scripting, is expensive to
create and operate. The creation expense relates to time: starting JRuby
can take thousands of milliseconds. The operational expense relates to
memory usage, most significantly in the permanent generation
(PermGen) memory space. The former issue can be mitigated using a
pool of runtimes, described in Section 3.9. The latter issue can usually be
resolved by ensuring that enough PermGen space is available by using
the - XX: Per n5i zecommand-line argument. Typically, a value of 256mis
adequate. Section 2.8 has some additional discussion of memory issues
with JRuby.

3.2. Executing Ruby from Java

3.2.1. Problem

You want to execute some Ruby code from a Java application.

3.2.2. Solution

Obtain an instance of or g. | ruby. Ruby and call

the eval Scriptl et () method.

The org.j ruby. javasupport. JavaEnbedU i | s class provides static
factory methods for creating an instance of the JRuby runtime. Example
3-1 shows a simple usage of these classes.

Example 3-1. Calling Ruby from Java

package org.jrubycookbook. ch03;
i mport java.util.Collections;

i mport org.jruby. Ruby;
i mport org.jruby.javasupport.JavaEnbedUtil s;

public class RubyRunner {

public static void main(String[] args) {
/'l Create an instance of the JRuby runtine. The paraneter
to initalize()
I/l is alist of paths to be added to the Ruby | oad path.
Ruby runtime =
JavaEnmbedUtils.initialize(Collections. EMPTY_LIST);
runtinme.eval Scriptlet("puts '"hello world ");
}

When run, this class outputs the classic greeting:

hello world

NOTE

Prior to JRuby 1.0.3, the method used to obtain instances of the JRuby
runtime was Ruby. get Def aul t | nst ance() . Although this usage has been
deprecated, you may see it from time to time in code examples.

3.2.3. Discussion

Every execution of JavaEnbedUtil s.initialize() will create a new
instance of the JRuby runtime. JRuby also provides a mechanism for
reuse of JRuby runtimes within a single Java thread. To enable this, set
the Java system property j ruby. runti ne. t hreadl ocal to "true". If this
is set, calls to JavaEnbedUtils.initialize() will create a new instance
and store that instance in aThr eadLocal variable. To access this instance,
call Ruby. get Current | nst ance() . Example 3-2 illustrates instance reuse
by setting and retrieving a global variable within the runtime.

Example 3-2. Using the current JRuby runtime

package org.|jrubycookbook. ch03;
i mport java.util.Collections;

i mport org.jruby. Ruby;
i mport org.jruby.javasupport.JavaEnbedUtil s;

public class RubyRunner2 {

public static void nmain(String[] args) {
/!l Enabl e ThreadLocal support
System set Property("jruby.runtinme.threadl ocal", "true");
/[l Create a JRuby instance
Ruby runtime =
JavaEnbedUtils.initialize(Collections. EMPTY LI ST);
/!l Execute a bit of Ruby code that creates a variable

runtine. eval Scriptlet("$nmessage = "hello world from
JRuby' ") ;

runtine. eval Scriptlet("$counter = 0");

for (int i =0; i <5; i++) {

out put Message() ;

}
}

private static void output Message() {
Ruby runtime = Ruby. getCurrentlnstance();
String scriptlet = "puts \"<#{$counter}> #{$message}\"";
runtime. eval Scriptlet("$counter = $counter.next");
runtime. eval Scriptlet(scriptlet);

When run, this class produces the following output:

<1> hello world from JRuby
<2> hello world from JRuby
<3> hello world from JRuby
<4> hello world from JRuby
<5> hello world from JRuby

Using the Ruby class, it is also possible to generate new instances of
common JRuby classes and pass those instances to the JRuby runtime so
that executed scripts can use them. The mai n() method from Example 3-
2 could be rewritten using these methods like this:

public static void main(String[] args) {
System set Property("jruby.runtine.threadl ocal", "true");
Ruby runtinme = get Or Createl nstance();
RubyString message = runtinme.newString("hello world");
runti ne. get d obal Vari abl es() . set ("$nessage", nessage);
for (int i =0; i <5; i++) {

out put Message(i + 1);

}

JRuby runtimes have a load path based on the value of
the j ruby. hone system property. The default load path elements for
JRuby 1.1 are:

jruby. hone/lib/ruby/site ruby/1.8

jruby. hone/lib/ruby/site_ruby

jruby. hone/lib/ruby/ 1.8

jruby. hone/lib/ruby/1.8/java

l'ib/ruby/ 1.8 (relative to the current working directory)
. . (the current working directory)

o0k wNRE

When you use the jruby executable as described in Chapter 1,

the j ruby. hone system property is set automatically based on

the JRUBY_HOVE environment variable. When writing Java applications
that use JRuby, it's necessary to set this system property manually. You
can set this system property using the - D command-line option:

java -cp bin:/opt/javal/jruby-1.1/1ib/jruby.jar\
- ruby. hone=/opt/javal/jruby-1.1
org. j rubycookbook. ch03. RubyRunner

This system property can also be set by an IDE when running your
application, such as the Eclipse Run... dialog seen in Figure 3-1, or a build
script such as the Ant build script seen in Example 3-3.

Figure 3-1. Setting the jruby.home system property with
Eclipse

=N | RubyRunner |

-,

ﬁ@ Main | ()= Argurnents) JREW ‘-'}q} Classpathj 'E.'z;{ Su:uuru:ew ﬁ Envirunmenﬂ = Cl:lmmcun\l

Program arguments:

WM arguments:

-Djruby home=/optfjava)jruby-1.1

weorking directory:
(%) Default: | Fhworkspace_locich03-javal |

() Other: | |

Warkspace. .. | | File Svstem, .. ‘ariables, ..

Example 3-3. Setting the jruby.home system property with
Apache Ant

<?xm version="1.0" encodi ng="UTF-8""?>
<proj ect nane="project" default="run">
<property name="jruby. hone" val ue="/opt/javal/jruby-1.1"/>

<target nanme="run">
<j ava cl assnane="org. jrubycookbook. ch03. RubyRunner 4"
fork="true">
<cl asspat h>
<pat hel enent [ocati on="bin"/>
<pat hel enment
| ocati on="${j ruby. hone}/lib/jruby.jar"/>
</ cl asspat h>
<sysproperty key="jruby. home" val ue="${jruby. home}"/>
</java>
</target>
</ proj ect >

If you have the JRUBY_HOME environment variable set, you may also be
able to obtain this value by calling Syst em get env() and using the value
of the environment variable to set thej r uby. honme system property:

System set Property("j ruby. hone", System getenv("JRUBY_HOVE"));

As noted in the comments in Example 3-1, theinitialize() method
of JavaElImlbedUlJt[1i[11[]s accepts a list of paths that will be prepended
to the default load path described earlier.

3.2.4. See Also

e Section 3.3"
e Section 3.4"

3.3. Invoking JRuby Through the Bean
Scripting Framework

3.3.1. Problem

You want to execute some Ruby code from a Java application and want
the flexibility to support multiple scripting language implementations.

3.3.2. Solution

Use the Bean Scripting Framework (BSF):

1. Add bsf.jar, included with JRuby distributions, to your Java
classpath.

2. Register the JRuby scripting engine with the BSF runtime.

3. Create an instance of the org. apache. bsf. BSFManager class.

4. Call the eval () or exec() method on the BSFvanager object.

Example 3-4 shows a simple usage of JRuby through BSF.

Example 3-4. Invoking JRuby with BSF

package org.jrubycookbook. ch03;

i nport org. apache. bsf. BSFExcepti on;
i mport org. apache. bsf. BSFManager ;

public class RubyBSFRunner ({

public static void nain(String[] args) throws BSFException {
BSFManager . regi st er Scri pti ngeEngi ne("ruby",
"org.jruby.javasupport. bsf.JRubyEngi ne", new
String[] { "rb" });
BSFManager manager = new BSFManager () ;
manager . exec("ruby", "<script>", 1, 1, "puts 'hello
world' ");

}

3.3.3. Discussion

The Bean Scripting Framework is an open source software framework
originally developed by IBM that is now part of the Apache Jakarta
project. It provides a generic application programming interface (API) for

supporting scripting languages within Java applications. BSF comes with
built-in support for several scripting languages, including:

e JavaScript

e NetRexx
e Python

e Tcl

e XSLT

In addition to these languages, the Bean Scripting Framework defines a
service provider interface (SPI) that allows other scripting languages to
be plugged in by implementing

theorg.apache.bsf.BSFE[Inllgine interface. JRuby provides an
implementation of this interface with the

class org. j ruby.javasupport. bsf. JRubyEngi ne. As you can see

in Example 3-4, it is necessary to register this class with BSF by

calling BSFManager . regi st er Scri pti ngEngi ne() . When registering this
engine implementation (or any other), you have to provide BSF with both
the name of the scripting language (r uby) and a list of possible file
extensions (r b). BSFManager provides two methods for invoking a
scripting language: eval () and exec() . The difference between these two
methods is that eval () is expected to return a value, whereas exec() is
not. Both methods accept the name of the scripting engine to be invoked
and some information used for errorreporting and debugging: a source
name (e.g., the filename when a script is loaded from a file), a line
number, and a column number. Finally, the last parameter to both
methods is the script content itself.

BSF provides a mechanism to expose Java objects to scripts. This is done
using the decl areBean() method of the BSFManager class. For JRuby,
Java objects are made available as global variables within the JRuby
runtime. Example 3-5 shows this functionality in use. Note that the
variable name passed to decl ar eBean() does not have the $ prefix, while
the reference to this variable from Ruby code does. The $ prefix is
automatically added to the variable name. This avoids adding Ruby-
specific names into your code, thereby enabling you to more easily mix
multiple scripting languages in the same application.

Example 3-5. Using declareBean()

package org.jrubycookbook. ch03;

i nport org. apache. bsf. BSFExcepti on;
i nport org. apache. bsf. BSFManager ;

public class RubyBSFRunner2 {

public static void nain(String[] args) throws BSFException {
BSFManager . regi st er Scri pti ngEngi ne("ruby",
"org.jruby.javasupport. bsf.JRubyEngi ne", new

String[] { "rb" });
BSFManager manager = new BSFManager () ;

nmanager . decl ar eBean(" nessage", "hello world",
String.class);
manager . exec("ruby", "<script>", 1, 1, "puts $nessage");

}

The BSF website, http://jakarta.apache.org/bsf, contains a variety of
additional documentation about using BSF.

3.3.4. See Also

e Section 3.2"
e Section 3.4"

3.4. Invoking JRuby Through Java Scripting
Support

3.4.1. Problem

You are running Java 6 (or later), and you want to execute some Ruby
code from a Java application and want the flexibility to support multiple
scripting language implementations.

3.4.2. Solution

Use Java's built-in scripting framework, defined in JSR (Java Specification
Request) 223:

1. Download jsr223-engines.zip from https://scripting.dev.java.net.

2. Unzip the file jruby/build/jruby-engine.jar from jsr223-
engines.zip and add it to your classpath.
3. Create an instance of j avax. scri pt. Scri pt Engi neManager .
4. Call get Engi neByName("ruby") to obtain an instance
of j avax. scri pt. Scri pt Engi ne.
5. Call the eval () method on the Scri pt Engi ne object.

Example 3-6 shows a simple usage of JRuby using the JSR 223 API.

Example 3-6. Invoking JRuby through
javax.script.ScriptEngineManager

package org.|jrubycookbook. ch03;

i mport javax.script.ScriptEngine;
i mport javax.script.Script Engi neManager;
i mport javax.script.ScriptException;

public class Ruby223Runner {
public static void main(String[] args) throws Script Exception

{
Scri pt Engi neManager scri pt Manager = new
Scri pt Engi neManager () ;
Scri pt Engi ne engi ne =
scri pt Manager . get Engi neByNanme("ruby") ;
engi ne. eval ("puts "hello world ");
}

3.4.3. Discussion

JSR 223: Scripting for the Java Platform was one of the more highly
anticipated upgrades to the Java platform in the Java 6 release. At the
simplest level, it provides a standardized version of the APl (and SPI) that
the Bean Scripting Framework (BSF) had provided for many years. Almost
more importantly, however, is the message that JSR 223 sends to the
programming community as a whole by formalizing the distinction
between Java the language and Java the platform. JSR 223's mere
existence suggests that the Java platform will provide a suitable runtime
environment for a variety of scripting languages, including Ruby/JRuby.

As you can see by comparing Example 3-6 with Example 3-4, the JSR 223
APl is simpler to use than the BSF API in that proactive registration of
scripting engines is not required. JSR 223 defines a discovery mechanism

that allows script engines to be automatically discovered based on the
existence of a file in the META-INF directory. When a script engine is
discovered, the scripting runtime queries it for a number of attributes,
including the file extensions typically associated with the engine and one
or more names by which the script engine will be identified. In the case of
JRuby, the script engine is registered with the names r uby and j r uby and
the file extension r b. Thus, any of these will return the JRuby engine:

scri pt Manager . get Engi neByNanme(" ruby") ;
scri pt Manager . get Engi neByNane("j ruby") ;
scri pt Manager . get Engi neByExt ensi on("rb");

As with the native JRuby interface and BSF, the JSR 223 API provides a
mechanism to pass Java objects into the scripting engine. In the case of
JRuby, these objects become global variables in the JRuby

runtime. Example 3-7 shows this functionality in action.

Example 3-7. Creating a global variable with JSR 223

package org.jrubycookbook. ch03;

i mport javax.script. ScriptEngine;
i mport javax.script. Script Engi neManager;
i mport javax.script.ScriptException;

public class Ruby223Runner2 {
public static void main(String[] args) throws Script Exception

{
Scri pt Engi neManager scri pt Manager = new
Scri pt Engi neManager () ;
Scri pt Engi ne engi ne =
scri pt Manager . get Engi neByName(" ruby");
engi ne. put ("nmessage"”, "hello world");
engi ne. eval ("puts $nessage");

As with BSF, the $ variable prefix indicating a global Ruby variable is
automatically prepended to the variable name.

Why Use BSF?

As you can see from these last two recipes, BSF and Java Scripting
provide basically equivalent functionality. New applications are strongly
advised to leverage the Java Scripting interface instead of BSF. That
said, there are some reasons for using BSF instead of Java Scripting.

The most significant reason is Java 5 compatibility. A JAR file containing
the core Java Scripting interfaces is available as a download for Java 5
environments
fromhttp://jcp.org/aboutJava/communityprocess/final/jsr223/index.html;
the JRuby engine, however, requires Java 6.%1 So if you are running Java
5, using Java Scripting to interface with JRuby simply is not an option.

A secondary advantage to BSF is that the BSF JRuby engine is included
with the JRuby distribution. This means that the BSF engine is
guaranteed to work with the version of JRuby you are using. During the
development cycle leading up to the release of JRuby 1.1, the native
JRuby interface changed significantly several times and broke the
existing Java Scripting engine.™?

Finally, for applications that use BSF already and are simply looking to
add support for Ruby as an additional scripting language, continuing to
use BSF is a logical course of action.

[81 There is an open issue for this in the JSR223 engine
project, https://scripting.dev.java.net/issues/show_bug.cqi?id=28.

1 In fact, at the time of writing, the JRuby engine in jsr223-engines.zip and jsr223-
engines.tar.gz does not work with JRuby 1.1. A compatible engine (version 1.1.2) is available
fromhttps://scripting.dev.java.net/servlets/ProjectDocumentList?folderlD=8848&expandFolder
=8848&folderlD=8847.

3.4.4. See Also

e Section 3.2"
e Section 3.3"

3.5. Logging from Ruby with Jakarta
Commons Logging

3.5.1. Problem

You are running Ruby code within a Java application that uses Jakarta
Commons Logging (JCL) and wish your log messages to be consistent.

3.5.2. Solution

Use a class like the one in Example 3-8 to transform fully qualified Ruby
class names into identifiers that resemble fully qualified Java class names.

Example 3-8. Custom JRuby LogFactory bridge class

package org.|rubycookbook. ch03;

i mport org.apache. cormons. | oggi ng. Log;
i mport org. apache. cormons. | oggi ng. LogFact ory;

i mport org.jruby. RubyQbj ect;

public class JRubyLogFactory {
public static Log getLog(RubyOhject o) {
String rubyCl assNane = o.get MetaC ass(). get Nane();
String | ogName = rubyd assNane. replace("::", ".");
return LogFactory. getLog(l ogNane);

Once this is in place, you can reference this class in your Ruby code and
create new Log objects by passing sel f to the get Log() method. Log
messages will be logged under a log name derived from the fully qualified
Ruby class name. The script in Example 3-9 will log a message under the
log name Log. LogTest .

Example 3-9. Using the JRubylLogFactory bridge class

i ncl ude Java
i nport org.jrubycookbook. ch03. JRubyLogFact ory

nodul e Log
cl ass LogTest
def initialize
@ og = JRubylLogFactory. get Log(sel f)
end

def hello
@og.info("hello via jcl")
end
end
end

Log: : LogTest. new. hel l o

3.5.3. Discussion

Jakarta Commons Logging is a popular Java library for providing a
consistent logging API across several logging implementations, including
Log4J, the java. util .| oggi ng package, LogKit, and JCL's own
SimpleLog. JCL is especially popular amongst library developers as it
allows the library to work with several logging implementations without
having a compile-time dependency to any of them. Java code will typically
obtain an implementation of

the or g. apache. cormons. | oggi ng. Log interface by calling one of two
factory methods:

e LogFactory. get Log(d ass)
e LogFactory.getLog(String)

The former calls the latter passing the fully qualified class name. As many
logging packages allow you to configure logging using a hierarchal model,
i.e., all logs whose names begin withor g. apache. conmons log to a
particular file, the class name has become a useful source of log names.

There are two reasons to write a bridge class such as that in Example 3-
8. First, with JRuby, Ruby classes are not Java classes, so this code will
fail:

@ og = org. apache. cormons. | oggi ng. LogFact ory. get Log(sel f. cl ass)

Second, although you could obtain the class nhame with code such as:

@og =
or g. apache. conmons. | oggi ng. LogFact ory. get Log(sel f. cl ass. nane)

The log name will have colons rather than the expected periods and
logging implementations that were written with Java packages in mind
will not recognize log names for classes in the same module as being
related. Whether this will be a major issue depends upon how much
logging your code is doing and how many individual classes you have.

You may have noticed that in Examples Example 3-8 and Example 3-9,
the get Log() method accepts an instance of or g. j ruby. RubyCbj ect .
This could have been written to accept an instance

of org.j ruby. Rubyd ass and then referenced from Ruby code like this:

@ og = JRubylLogFactory. get Log(sel f.cl ass)

However, this is more verbose and has more potential to result in a
variance in log names. The point of this exercise is to have consistent log
names; encapsulating the logic for generating a log name from a Ruby
object seems to make more sense. If you needed to have a nonstandard
log name, you could always go back to the

original LogFact ory. get Log() method:

@ og = org. apache. cormons. | oggi ng. LogFact ory. get Log(" Sone O her
Log Nane")

3.6. Using the Java Concurrency Utilities

3.6.1. Problem

You want to use the classes in the j ava. util . concurrent package to
write code that is both thread-safe and highly performant.

3.6.2. Solution

Simply reference the classes in your Ruby code. For example, to create
an instance of java. uti |l . concurrent. Concurrent HashMap, just use the
constructor:

$hash = java.util.concurrent. Concurrent HashMap. new

Likewise, the java. util . concurrent. Execut ors factory class can be
used to create powerful yet easy-to-use thread pools. In Example 3-10, a
thread pool containing two threads is created and used from Ruby code.

Example 3-10. Using a java.util.concurrent thread pool from
Ruby

i ncl ude Java

cl ass MyLongTask
include java.util.concurrent. Callable

def initialize(label)

@ abel = | abel
end
def call
puts "about to sleep in task |abel ed #{ @ abel }\ n"
artificially create a | onger del ay
sleep 5
puts "done sleeping in task | abel ed #{ @ abel }\ n"
return "result of the long task |abel ed #{ @ abel }\ n"
end
end

create a new thread pool
executor = java.util.concurrent.Executors:: newri xedThr eadPool (2)

create an array to store the future value references
future = Array. new

puts "submtting first task"
future[0] = executor.submt(MLongTask. newm("first"))

puts "submitting second task"
future[1l] = executor.submt(M/LongTask. new("second"))

puts "submtting third task”
future[2] = executor.subnmt(M/LongTask. newm("third"))

puts "All tasks have been subnitted"

this method call will block until the first task has conpl eted
puts future[0].get()

this method call will block until the second task has conpl eted
puts future[1].get()

this method call will block until the third task has conpl et ed
puts future[2].get()

The exact output of this code may vary slightly from execution to
execution, but in general you will see all three tasks being submitted,
followed by the first two tasks starting to sleep. Eventually, those tasks
will complete and the third will start. However, since there are multiple
threads, the first two tasks may be completed in any order, as seen here:

submitting first task

submtting second task

about to sleep in task |abeled first
subnmitting third task

about to sleep in task | abel ed second
Al'l tasks have been submtted

done sleeping in task | abel ed second
done sleeping in task | abeled first
result of the long task |abeled first
about to sleep in task labeled third
result of the long task | abel ed second
done sleeping in task | abeled third
result of the long task |abeled third

3.6.3. Discussion

When the JRuby runtime creates Ruby proxy objects for Java collection
classes, it adds a variety of utility methods found in the corresponding
Ruby collection class. This enables Java collection classes, including the
concurrency-optimized classes in the java. util.concurrent packages to
be treated like Ruby collections in some, but not all, cases. For example,
when used from

JRuby,j ava. uti | . concurrent. Concurrent HashMap instances have

an each method that behaves just like the each method from the

Ruby Hash class, as seen in Example 3-11.

Example 3-11. Using a ConcurrentHashMap like a Hash

i ncl ude Java
i mport java.util.concurrent. Concurrent HashMap

states = Concurrent HashMap. new
stat es[' NY'] " New Yor k'
states[' ND] "North Dakot a'

st at es. each do | key, val ue|
puts "The abbreviation for #{value} is #{key}."
end

Similar methods are added to instances

of java. util.List andjava.util.Set. However, you cannot use the
Ruby i nst ance_of ? method to check if these objects are instances of the
corresponding Ruby collection class. Instead, you can use

the respond_t 0? method to check the availability of individual methods:

i rb(main):001: 0>
java.util.concurrent. CopyOnWiteArraylLi st.new. respond_to? 'each'
=> true

3.7. Creating JavaBean Style Accessor
Methods

3.7.1. Problem

Ruby developers use the attr _accessor function as a convenient way to
declare instance variables and create r ead and wri t e methods in a class.
You would like a similar function that can add JavaBean-

style get and set methods to a class with a condensed

and declarative syntax.

3.7.2. Solution

Start by creating a Ruby module that will contain the new method. The
function can be coded directly into your classes, but the module
encourages more reusable and less repetitive code. Create a method
called java_attr_accessor that accepts a list of symbols, consistent with
Ruby's attr _accessor method. The symbols are named with the Ruby
style of using underscores as word delimiters, but the function will
convert each symbol into the JavaBean-style equivalent name by adding
the get and set prefixes to the camel case representation of the

name. Example 3-12shows the module and a class that adds several
instance variables using the j ava_attr_accessor method after extending
the new module.

Example 3-12. Helper module for JavaBean accessors

nodul e Hel per
def java_ attr_accessor(*synbol s)
synmbol s. each { | synbol |
canel cased = synbol .to_s.capitalize.gsub(/_[a-zA-Z]/) {]|s|
s[1..1].upcase}
nodul e_eval ("def get#{canel cased}() @{synbol}; end")
nodul e_eval ("def set#{canel cased}(val) @#{synbol} = val
end")
}
end
end

cl ass Exanpl e

extend Hel per

java_attr_accessor :title,:first_nane
end

nc = Exanpl e. new
nc.setTitl e(' Cookbook')
nc. set Fi rst Nane(" John")

3.7.3. Discussion
This utility function can be very useful when working with applications or

frameworks that make heavy use of JavaBeans, such as Hibernate and
Spring.

3.8. Writing Consistent Code

3.8.1. Problem

You are calling both Ruby and Java libraries from Ruby and want the code
to look consistent. This line from Example 3-9 is very obviously calling a
Java method:

@ og = JRubyLogFactory. get Log(sel f)

3.8.2. Solution

Replace camel-cased method names with method names that follow the
Ruby naming convention: all lowercase letters and underscores for word

separators. The line from Example 3-9referenced above could be
rewritten as:

@og = JRubylLogFactory. get | og(self)

JRuby provides this automatic method translation as a way of blending
Java and Ruby method calls together.

3.8.3. Discussion

JRuby won't override an existing method. If there was an actual method
named get | og(), it takes precedence. That caveat aside, using this
feature leads to a more consistent coding style.

3.9. Transforming XML with TrAX
3.9.1. Problem

You want to transform XML documents using XSLT through Java's
Transformation API for XML (TrAX).

3.9.2. Solution

Import the class j avax. xm . transf orm Tr ansf or ner Fact ory as well as
the classes to be used for the input and output,

typically j avax. xm . transf orm stream StreanSour ce andj avax. xm . tr
ansform stream StreanResul t. If you will be transforming with the
same stylesheet repeatedly, create

ajavax.xm .transform Tenpl at es object to save

the compiled stylesheet. If this is a one-time transformation, simply
create a j avax. xm . t UrllalinlIslIfllollr[lm. Transformer object. Example
3-13 shows both scenarios.

Example 3-13. Using TrAX from JRuby

i ncl ude Java

i nport javax.xm .transform TransfornerFactory
i nport javax.xm .transform stream StreanResul t
i mport javax.xm .transform stream StreanSource

Create a new TransfornerFactory instance
factory = TransformnerFactory. new_ i nstance

Compile a stylesheet into a Tenpl ate obj ect
style_input = StreanBource. new("rss.xslt")
tenpl ates = factory.new_ tenpl ates(styl e_input)

Setup sources for input and out put

i nput =

St reanSource. new("http://www. mv. com rss/ news/ news _full.jhtm")
out put = StreanResult. new(j ava. |l ang. System out)

Create a new Transforner fromthe Tenpl ate obj ect
transforner = tenpl ates. new_transforner

Do the transformation
transforner.transforn(i nput, output)

Sinmplified — just create a new Transforner fromthe styl esheet
transforner = factory.new_ transformer(style_input)
transforner.transforn(input, output)

3.9.3. Discussion

TrAX includes a few interfaces that can be easily implemented in Ruby to
customize the transformation process. The

interface j avax. xm . transf orm ErrorLi st ener receives callbacks from
theTr ansf or mer object whenever a warning or error is

encountered. Example 3-14 shows a simple implementation of this
interface in Ruby.

Example 3-14. Implementing javax.xml.transform.ErrorListener
in Ruby

cl ass ErrorCounter
attr_reader :errors
attr_reader :warnings
attr_reader :fatals

def error(ex)
@rrors =0 if (@rrors == nil)
@rrors = @rrors + 1

end

def war ni ng(ex)
@warnings = 0 if (@arnings == nil)
@varnings = @warnings + 1

end

def fatal Error(ex)
@atals =0 if (@atals == nil)
@atals = @atals + 1
end
end

Use the ErrorCounter class

counter = ErrorCounter.new

transforner = factory.new transforner(style_input)
transforner.error_|listener = counter
transforner.transforn(input, output)

p "Errors: #{counter.errors}"

Another TrAX interface of note is j avax. xm . t ransf or m URl Resol ver,
which allows you to intercept references made from a stylesheet to
external resources. The URI Resol ver implementation inExample 3-

15 shows a simple usage of this interface to intercept a relative reference
for a stylesheet. This interception was done whether rss.xslt was
referenced using the XSLT docunent () function, xsl : i nport,

or xsl ;i ncl ude. For any other URI, the r esol ve method will return ni |,
meaning that the Tr ansf or mer should resolve the URI itself.

Example 3-15. Implementing javax.xml.transform.URIResolver
in Ruby

cl ass MySiteResol ver
def resol ve(href, base)
if (href == "rss.xslt")
return StreantSource.new(' http://ww. nysite.comrss.xslt')
end
end
end

3.10. Creating a Pool of JRuby Runtimes
3.10.1. Problem

You need to execute Ruby code that is not thread-safe and requires
exclusive control of the JRuby runtime and do not want to create new
runtimes per thread.

3.10.2. Solution

Use the Jakarta Commons Pool library to create a pool of JRuby runtimes.
When your code needs to invoke JRuby, borrow a runtime from the pool
and return it when finished. To start, download Jakarta Commons Pool
from http://jakarta.apache.org/commons/pool/ and add the JAR file to
your classpath. Create a subclass

of or g. apache. commons. pool . BasePool abl ehj ect Fact ory that creates
JRuby runtimes using the methods described in Section 3.2. Then use this
factory object to construct

an or g. apache. commons. pool . i npl . Generi cQbj ect Pool . Example 3-
16 shows a subclass of Generi cObj ect Pool built for pooling JRuby
runtimes.

Example 3-16. Creating a pool of JRuby runtimes

package org.|rubycookbook. ch03;

import java.util.Collections;
i mport java.util. Date,;

i nport org. apache. cormons. pool . BasePool abl eCbj ect Fact ory;
i nport org. apache. commons. pool . i npl . Generi cObj ect Pool ;

i mport org.jruby. Ruby;

i mport org.jruby.javasupport.JavaEnbedUti |l s;

public class JRubyRunti nePool extends GenericObject Pool ({

private static class JRubyRunti meFactory extends
BasePool abl eCbj ect Factory {

public Object makeOhject() throws Exception {
Ruby runtine =
JavaEnbedUtils.initialize(Collections. EMPTY LI ST);
return runtine;
}

}

publ i ¢ JRubyRunti mePool () {
super (new JRubyRunti meFactory());
}

public Ruby borrowRuntine() throws Exception {
return (Ruby) borrowChject();
}

public void returnRunti me(Ruby runtinme) throws Exception {
returnQoj ect(runtine);
}

public static void nmain(String[] args) throws Exception {
JRubyRunt i mrePool pool = new JRubyRunti mePool () ;
/1 always have a m ninum of five runtines available in
t he pool
pool . set M nl dl e(5);

[l if there are nore than 10 runtines in the pool, renove
the extras
pool . set Maxl dl e(10);

// and don't allow nore than 40 runtines to be in use at
the sanme tine
pool . set MaxActi ve(40);

/1 check every mnute that the nminimum and maxi nrumidl e
counts are net
pool . set Ti neBet weenEvi cti onRunsM | |i s(60000) ;

[/l start the application

3.10.3. Discussion

The Generi cObj ect Pool class has a variety of configuration parameters,
including:

maxActi ve

The maximum number of objects that can be borrowed from the
pool at one time. Can be unlimited. The default is 8.

max| dl e

The maximum number of objects that can sit idle in the pool at
any time. Can be unlimited. The default is 8.

m nldl e

The minimum number of objects that will be idle in the pool. If
the pool drops below this threshold

(and ti meBet weenEvi cti onRunsM | | s IS greater than zero, see
below), new instances will be created. The default is O.

whenExhaust edActi on

Specifies the behavior of the pool when the pool is empty and a
request to borrow an object is received. Can be to fail (throw
ajava. util.NoSuchEl ement Exception), grow, Or to bl ock. Defaults
to bl ock.

ti meBet weenEvi cti onRunsM | | s

Defines the time delay between runs of an asynchronous task
that enforces that the naxl dl e and ni nl dl e properties. By default,
this task is disabled.

Because the JRuby runtime is time-consuming to create, be sure to use
the m nl dl e and the ti neBet weenEvi cti onRunsM | | s properties.

3.10.4. See Also

e The Jakarta Commons Pool
website, http://commons.apache.org/pool/

o http://jruby-extras.rubyforge.org/svn/trunk/rails-integration/,
GoldSpike source code

3.11. Performing Remote Management with
JMX

3.11.1. Problem

You want to write a client using Java Management Extensions (JMX) in
Ruby to manage a remote Java application.

3.11.2. Solution

Use the j mk4r Ruby gem. This library significantly simplifies use of the
JMX API. To install j nx4r :

jruby —=S geminstall jnmxd4r

To establish a connection with a JMX service, use
the est abl i sh_connecti on class method:

JMX: : MBean. est abl i sh_connection :host => "l|ocal host", :port =>
1099

To find an MBean by name, use the fi nd_by_nane class method:

os = JMX:: MBean. find_by nane "java.l ang:type=Qperati ngSyst ent

The fi nd_by_nanme method returns a dynamic object based around the
MBean interface. In the case of the MBean

named j ava. | ang: t ype=Oper ati ngSyst em the Java Virtual Machine
exposes an MBean with several attributes about the underlying operating
system. These JMX attributes can be simply accessed as properties. For
example, to output the number of available processors:

p "Running with #{o0s.avail abl e_processors} processors."

NOTE

The actual attribute name is Avai | abl eProcessors. The jmx4r library
converts this name into a more Ruby-like form.

Similarly, JMX operations are invoked as method calls. For example, to
force a garbage collection:

menmory = JMX:: MBean. find_by nane "java.l ang:type=Menory"
menory. gc

3.11.3. Discussion

The jmx4r library also supports the ability to query for MBeans. Example
3-17 shows this functionality in action. In this example, JMX is used to
discover the available JMS queues in an Apache ActiveMQ JMS server.

Example 3-17. Querying MBeans

i ncl ude Java

require 'rubygens'
gem ' j nmx4r'
require 'jnx4r'

JMX: : MBean. est abl i sh_connection :host => "local host", :port =>
1099

gueues = JMX:: MBean.find_all _by nanme \
"org. apache. acti venq: Br oker Nanme=Il ocal host, Type=Queue, *"

gueues. each do | queue|

p "Queue #{queue.nane} contains #{queue.queue_size} queued
messages. "
end

Depending on the available queues, the output might be similar to this:

Queue LogQueue contains 25 queued nessages.
Queue Order Queue contains 5 queued nessages.

3.11.4. See Also

e jmx4r website, http://code.google.com/p/jmx4r/
« Java Management Extensions by J. Steven Perry (O'Reilly)

3.12. Accessing Native Libraries with JRuby
3.12.1. Problem

You want to access native libraries such as Windows DLLs or Unix shared
objects (. so) from JRuby.

3.12.2. Solution

Use the Java Native Access (JNA) API to access the operating system's
libraries using only Java or any other JVM-based language like JRuby. JNA
uses a dynamic architecture that eliminates the chore of creating,
compiling, and distributing native interface files, which was required in
other Java frameworks like the Java Native Interface (JNI). Example 3-
18 shows how you can access the disk information from calls to the native
Windows libraries.

Example 3-18. INA example showing Windows disk space

i ncl ude Java
i mport com sun. jna. ptr.LongByRef erence

Kernel 32 = com sun. jna. NativeLi brary. getlnstance(' kernel 32")
Get Di skFreeSpace = Kernel 32. get Functi on(' Get Di skFreeSpaceExA')

avai | = LongByReference. new

total = LongByReference. new

total _free = LongByReference. new

num = Get Di skFreeSpace. i nvokelnt(["C\\", avail, total,

total free].to_java)

puts "avail abl e: #{avail.val ue}"

puts "total: #{total.value}"

puts "total _free #{total free.val ue}"

3.12.3. Discussion

JNA is a great match with JRuby and makes it easier to create cross-
platform applications that run inside the Java Virtual Machine while still
accessing platform-specific APIs. The dynamic architecture is also

philosophically in tune with Ruby development because it uses designs
that eliminate extraneous code and facilitates rapid development.

3.12.4. See Also

« Java Native Access website, https://jna.dev.java.net

Chapter 4. Enterprise Java

Introduction

Creating a JNDI Context

Sending JMS Messages

Receiving JMS Messages

Implementing an Enterprise JavaBean with JRuby
Defining Spring Beans in JRuby

Creating Refreshable JRuby Spring Beans
Defining JRuby Spring Beans Inline

Applying Spring-Aware Interfaces to JRuby Objects
Creating Spring MVC Controllers with JRuby
Using Hibernate with JRuby

Using the Java Persistence APl with JRuby
Making SOAP Calls

Simplifying LDAP Access

4.1. Introduction

As discussed in the introduction to Chapter 1, one of JRuby's great
strengths is its ability to seamlessly interact with the wide variety of
available Java libraries. One of the areas where this is most relevant is in
the so-called enterprise domain, where Java has become well entrenched.
Much of Java's success has come from the Java Enterprise Edition (Java
EE, formerly known as J2EE) platform standards. But platforms that are
not Java standards have been just as critical. Two will be covered in this
chapter: Spring Framework and Hibernate.® Regardless of whether a
particular technology is a standard or not, all enterprise Java platforms
are designed to enable developers to focus on developing business and
presentation logic rather than infrastructure and integration.

81 For some time, the combination of Spring and Hibernate was being referred to as J3EE, but
this term seems to have disappeared in recent years.

This chapter starts with a recipe about using Java Naming and Directory
Interface (JNDI) objects from Ruby. As its name implies, JNDI is an API
for accessing directory services. JNDI presents application developers
with a unified interface that can span various services and service types.
Within a Java EE application server, JNDI is used by application code to
discover resources managed by the server. These could be data sources
(a subject discussed throughout Chapter 2), Enterprise JavaBeans (EJBs),
Java Messaging Service (JMS) objects, and a variety of other resources.
Your Java EE application server documentation should provide complete
details on what resources are available and how you can add additional
resources to the server. JNDI can also be used to access external
services. In the second and third recipes, we use JNDI to connect to a
remote JMS broker using the Apache ActiveMQ server so that we can send
and receive JMS messages. In a later recipe, we use JNDI to connect to a
Lightweight Directory Access Protocol (LDAP) server and use JRuby to
simplify the JNDI API.

Following JMS, we will look at implementing an Enterprise JavaBean
(EJB). Thanks to the support for annotation-based configuration that
arrived with EJB 3, EJB development has become much simpler, yet the
lack of annotation support in JRuby means that you still have to write a
small amount of bridge code to implement EJBs. Although JRuby and EJB
may seem like an odd match at first, the EJB model can provide some
significant benefits when being used with JRuby because of the instance
pooling provided by Java EE containers. These containers all perform
instance pooling for EJBs and only allow one consumer per EJB instance
at a time. This means that when writing an EJB, whether using Java or
Ruby, you do not need to worry about concurrency: the container does it
for you. Many Ruby libraries, most notably ActiveRecord and Rails, have
known concurrency problems; using EJBs eliminates the need to create
custom instance pools as described in Section 3.10 and in the discussion
of Rails in Chapter 2.

There are several recipes in this chapter that discuss JRuby integration
with the Spring Framework, sometimes referred to as just Spring. Spring
is, at the core, a platform for creating applications by defining application
components (in the form of Java classes) and the relationships between
them. This is known as Dependency Injection (DI) and/or Inversion of
Control (10C).™ Leveraging this core platform, Spring also provides
support for Aspect-Orientated Programming (AOP), transactions,
authentication and authorization, remoting, model-view-controller (MVC)
web development, and much more. Since version 2.0, Spring has
provided support for dynamic languages, including JRuby. This support,

the focus of several recipes, allows for objects defined in JRuby to be
transparently integrated with objects defined in Java (or other
dynamic languages).

91 strictly speaking, Dependency Injection is a particular application of the Inversion of
Control pattern, but in practice the terms are frequently used interchangeably.

This chapter also covers the Object-Relational Mapping (ORM) framework
Hibernate as well as the Java Persistence APl (JPA). Due to JRuby's
Java integration, using these frameworks from JRuby isn't terribly
complicated; mostly Hibernate and JPA just work. As a result, the recipes
are about using JRuby as a productivity booster for these APIs.

101 which is, in many ways, a standardized version of Hibernate.

4.2. Creating a JNDI Context
4.2.1. Problem

You need to create a JNDI Cont ext object in order to connect to an LDAP
server or JMS broker.

4.2.2. Solution

Create a Ruby hash with the properties you want to use as the
environment and then pass this hash to the constructor

of j avax. nam ng. | ni ti al Cont ext, wrapping it in

ajava. util . Hasht abl eobject. For example, the code in Example 4-

1 creates a JNDI Cont ext using the University of Michigan's public LDAP
server.

Example 4-1. Creating a custom JNDI Context

i ncl ude Java

i mport java.util.Hashtable
i mport javax.nam ng.Initial Context
i mport javax.nam ng. Cont ext

env = {Context:: | N TI AL_CONTEXT_FACTORY =>
"com sun. j ndi. | dap. LdapCt xFact ory",
Context:: PROVIDER URL => "ldap://ldap.itd.um ch. edu: 389" }

ctx = Initial Context.new Hasht abl e. new(env))

4.2.3. Discussion

Although JRuby will coerce Ruby hashes into Java objects that implement
the java. util. Map interface, | ni ti al Cont ext objects are configured
using a Hasht abl e. As a result, the hash must be wrapped by

a Hasht abl e.

The properties used to instantiate the | ni ti al Cont ext object can also be
stored in a file called jndi.properties in the Java classpath. In the case
of Example 4-1, the following would be the contents of jndi.properties:

java.nam ng.factory.initial = comsun.jndi.ldap. LdapCt xFactory
java. nam ng. provider.url = ldap://ldap.itd.un ch. edu: 389

With this configuration in place, the I ni ti al Cont ext can be easily
created using the no-argument constructor:

ctx = Initial Context.new

Regardless of how it is configured, the value of

the java. nam ng. factory.initial property must be a class available on
the classpath. As discussed in Section 1.8, JRuby has the ability to add
JAR files to the classpath dynamically. However, that capability does not
apply to classes used in this type of factory class. This is because JAR files
added dynamically to the classpath by JRuby are only visible from Ruby
code. Throughout the next recipe, for example,

the java. nam ng. factory.initial property is set

to org. apache. acti veng. j ndi . Acti veMJ ni ti al Cont ext Fact ory. If you
tried to add this class (and its dependencies) to the classpath in JRuby,

a javax.naming.NoInilltialConlltlle[lx[ltException will be thrown:

$jirb

i rb(main):001: 0> include Java

i rb(main):002: 0>

irb(main):003:0* require ' /opt/java/libs/geroninD—jZee—
managenent 1.0 _spec- 1. 0. Jar

irb(main):004:0> require '/opt/javal/libs/geronino-jns_1.1 spec-
1.1.1.jar’

irb(main):005:0> require '/opt/javal/libs/activeng-core-5.1.0.jar'
i rb(main):006: 0>

i rb(main):007:0* inport java.util.Hashtable

i rb(main):008: 0> inport javax.nam ng.Initial Context

i rb(main):009: 0> inport javax.nam ng. Cont ext

i rb(main):010: 0>

irb(main):011:0* env = { Context::|IN Tl AL_CONTEXT_FACTORY =>

irb(main):012: 1*
"org. apache. activenq.jndi.Acti veMJ ni ti al Cont ext Factory",
i rb(main):013: 1* Cont ext : : PROVI DER_URL =>
irb(main):014: 1* "tcp://local host: 61616" }
irb(main):015:0> ctx = Initial Context.new Hasht abl e. new(env))
Nat i veExcepti on: javax.nam ng. Nol ni tial Cont ext Excepti on: Cannot
instantiate cl ass:\

org. apache. activenyg. jndi.Acti veMJ ni ti al Cont ext Fact ory

There is a solution to the problem—instantiate the class directly:

i nport org.apache. activeny. jndi.ActiveMJ) nitial ContextFactory

env = { Context::PROVIDER URL => "tcp://local host: 61616" }
ctx =
ActiveM) nitial Context Factory. new. get _initial_context(Hashtable.n

ew env))

4.2.4. See Also

e The JNDI website, http://java.sun.com/products/jndi/

4.3. Sending JMS Messages
4.3.1. Problem

Your application needs to send messages to a Java Messaging Service
(JMS) message broker.

4.3.2. Solution

Add any necessary JAR files to the classpath. Create

aj avax. nam ng. I ni ti al Cont ext object as described in Section 4.2. The
environment settings will be documented by the JMS broker vendor. For
example, to connect to an instance of Apache ActiveMQ, you would use
these properties:

env = { Context::|IN Tl AL_CONTEXT_ FACTORY =>
"org. apache. activenqg.jndi.Acti veMJ ni tial Cont ext Factory",
Cont ext : : PROVI DER_URL =>
"tcp://local host:61616" }

Once the | ni ti al Cont ext has been properly created, look up the
JMS ConnectionFacltlollr[ly and Desti nati on objects:

connection_factory = ctx.|ookup("ConnectionFactory")
destination = ctx. | ookup("dynani cQueues/ out put. queue")

The rest is simply JMS boilerplate, which we can encapsulate into a Ruby
class as seen in Example 4-2.

Example 4-2. Sending a JMS message from Ruby

i ncl ude Java

i mport java.util.Hashtable

i nport javax.naning.lnitial Context
i nport javax. nani ng. Cont ext

i nport javax.jms. Session

cl ass JneSender

def initialize(environnent)
@ontext = Initial Context.new(Hashtabl e. new environnment))
@onnection_factory = @ontext.| ookup("Connecti onFactory")
end

def send_t ext _nessage(destinati on_nanme, nessage_text)
destination = @ontext.| ookup(destinati on_nane)
connection = @onnection_factory.create_connection()
sessi on = connection. create_session(fal se,
Sessi on: : AUTO ACKNOALEDGE)
producer = session.create_producer(destination)
nmessage = session.create_text_nessage
nmessage. t ext = nessage_t ext
producer. send(message)
sessi on. cl ose
end
end

env = { Context::IN Tl AL_CONTEXT_FACTORY =>
"org.apache. activeng. j ndi.ActiveMJ) ni ti al Cont ext Factory",
Cont ext : : PROVI DER_URL =>
"tcp://local host: 61616" }
sender = JnsSender. new env)

sender. send_t ext _nessage("dynam cQueues/ out put. queue", "hello to
JMS from Ruby")

This message can then be seen in the ActiveMQ administrative web client,
as in Figure 4-1.

4.3.3. Discussion

As discussed in Section 4.2, to create

aj avax. nam ng. I ni ti al Cont ext object

using or g. apache. acti veny. j ndi . Acti veMJ ni ti al Cont ext Factory,
the ActiveMQ JAR files must be on the classpath when the application
starts—not added dynamically by JRuby.

Figure 4-1. JRuby message in the ActiveMQ web client

[__]
s *Apache
U Software Foundation
-. http:f/iwww.apache CII'I]."

Home | Queues | Topics | Subscribers | Send

Heade Propertie: .
mACHS prarties B Queue Views

Message ID ID:iny-edelsonj-3682-12088460802671-0:0:1:1:1

m Graph
Destination gueueffoutput. queue m XML
Correlation .
1D B Useful Links

Group ® Documentation
m FAQ
Sequence o m Downloads
= Forums
Expiration n}
Perzistence Perzistent
Priority 4

Radalivarad falsa
Feply Ta
Timestamp 1208860803062

Type

Message Details
helle to JMS from Ruby

5-2007 The Apache Software Foundation. [

The JMS API defines five different types of messages:

Stream

Defined by the j avax. j ns. St reanm\essage interface, messages of
this type contain one or more Java primitives or objects in
sequential order.

Map

Defined by the j avax. j ms. MapMessage interface, messages of this
type contain one or more name-value pairs. The names are
Java string objects and the values can be primitives or objects.

Text

Defined by the j avax. j ns. Text Message interface, messages of this
type contain a single string object.

Object

Defined by the javax. j ns. bj ect Message interface, these messages
contain a Java object that implements the Seri al i zabl e interface.

Bytes

Defined by the javax. j ns. Byt esMessage interface, this message
type is largely to support existing (i.e., non-JMS) messaging
systems.

All of these message types can be used from JRuby, but special care must
be taken when sending objects as JRuby objects are not correctly handled
using Java serialization. This is true even if the message receiver is a
JRuby application. For example, let's add a send_obj ect _nessage method
to the class from Example 4-2:

def send_obj ect _nessage(destinati on_nanme, message_obj ect)
destination = @ontext.| ookup(destination_nane)
connection = @onnection_factory. create_connection()
session = connection. create_session(false,

Sessi on: : AUTO_ACKNOWALEDCE)
producer = session. create_ producer(destination)
nmessage = session.create object nessage nessage_obj ect
producer. send(message)
session. cl ose

end

If you were to call this message with a Ruby array:

arr = ["one", "two", "three"]
send_obj ect _nessage("dynam cQueues/ out put . queue, arr)

An exception would be thrown when this message was received because
the array is serialized as an or g. j ruby. RubyAr ray object. Instead, you
should create aj ava. util. ArraylLi st object from this Ruby array:

arr = ["one", "two", "three"]
send_obj ect _message(" dynani cQueues/ out put . queue,
java.util.ArrayList.new(arr))

4.4. Receiving JMS Messages
4.4.1. Problem

Your application needs to receive messages from a JMS message broker.

4.4.2. Solution

The initial setup is similar to sending JMS messages: create a

JNDI I ni ti al Cont ext object and look up the Connecti onFact ory and
destination from the JNDI context. Using theConnect i onFact ory, create
a Connect i on object and from the Connecti on, create a Sessi on object.
The Sessi on object can be used to create a MessageConsuner for

a destination. TheMessageConsuner object has two methods for receiving
messages, both named r ecei ve. If recei ve is called with no arguments,
then the method blocks until a message is available. If r ecei ve is called
with an argument (which must be numeric), the method blocks until a
message is available or the specific number of milliseconds passes.

Example 4-3 contains some basic code for receiving a message. Once the
message is received, it is inspected to see if it is a text message and, if
so, the text is output.

Example 4-3. Receiving a JMS message

i ncl ude Java

i nport java.util.Hashtable

i nport javax.naning.lnitial Context
i mport j avax. nani ng. Cont ext

i mport javax.j ns. Session

env = { Context::IN TI AL_CONTEXT_FACTORY =>
"org.apache. activeng.jndi.ActiveMJ ni tial Cont ext Factory",
Cont ext : : PROVI DER_URL =>
"tcp://local host:61616" }

context = Initial Context.new Hashtabl e. new(env))
connection_factory = context.| ookup("Connecti onFactory")

destination = context. | ookup("dynam cQueues/ out put. queue")
connection = connection_factory.create_connection()
session = connection. create_session(false,

Sessi on: : AUTO_ACKNOWL.EDGE)

consuner = session. create_consuner(destination)

connection. start

nmessage = consuner.receive
if (message.respond_to? 'text')
p "nessage = #{nessage.text}"
el se
p "nmessage isn't a text nessage"
end

connection. stop
sessi on. cl ose

4.4.3. Discussion

Note that in Example 4-3, we start the connection before receiving a
message. A running connection is required before receiving messages
whereas it is not for sending messages.

4.5. Implementing an Enterprise JavaBean
with JRuby

4.5.1. Problem

You want to encapsulate some Ruby code into an Enterprise JavaBean
(EJB) in order to easily integrate it with other EJBs and servlets as well as
take advantage of EJB container-provided services such as instance
pooling, security, and transactions.

4.5.2. Solution

Create an interface and implementation class for your EJB. A simple EJB
interface, annotated with @Qocal is in Example 4-4.

Example 4-4. EJB local interface

package org.jrubycookbook.j2ee. ej b;
i nport javax.ejb.Local;

@.ocal
public interface Reverser {

public String reverse(String string);
}

In the implementation class, create an initialization method and use it to
create an instance of the JRuby runtime. This could be done with any of
the techniques discussed in Chapter 3. Annotate this initialization method
with the @ost Const ruct annotation. Then in each business method (i.e.,
those defined by the EJB interface), wrap the method arguments in Ruby
objects, add them to the runtime, and finally execute the appropriate
block of Ruby code. Example 4-5 includes a JRuby-based EJB class. In
this example, the code is inline, but it could just as easily be in an
external file.

Example 4-5. JRuby EJB

package org.jrubycookbook.j2ee. ej b;

i nport javax. annot ati on. Post Const ruct;
i nport javax.ejb. Stateless;

i mport org.jruby. Ruby;
i mport org.jruby. RubyString;
i mport org.jruby.javasupport.JavaEnbedUtil s;

&>t at el ess
public class ReverserBean inplenments Reverser {

private Ruby ruby;

@post Const ruct
public void init() {

ruby = JavaEnbedUils.initialize(Collections. EMPTY_LIST);
}

public String reverse(String string) {
ruby. get A obal Vari abl es() . set (" $nessage",
ruby. newString(string));
return
ruby. eval Scri ptl et ("$message. reverse").asJavaString();

}

This EJB can then be accessed by servlets and other EJBs in the same
container. Example 4-6 includes a servlet that uses this EJB.

Example 4-6. Servlet accessing the JRuby EJB

package org.jrubycookbook.j2ee. servlet;
i nport java.io.lOexception;

i mport javax.ejb. EJB;

i mport javax.servlet. Servl et Excepti on;

i mport javax.servlet.http. HtpServlet;

i mport javax.servlet.http. HtpServl et Request;

i mport javax.servlet. http. HtpServl et Response;

i mport org.jrubycookbook. j2ee. ej b. Reverser;
public class ReverseServl et extends HtpServlet {

@JB
private Reverser reverser;

protected void doGet (Htt pServl et Request req,
Ht t pSer vl et Response resp)
throws Servl et Exception, | CException {
String result =
reverser.reverse(req. getParaneter("word"));
resp.getWiter().println(result);
}

A remote interface could also be defined and annotated with @enot e,
which would make this EJB accessible remotely using Remote Method
Invocation (RMI).

4.5.3. Discussion

As you can see, the class in Example 4-5 is just a bridge between the EJB
container and the JRuby runtime. In large part, this is necessary because
JRuby does not yet support Java annotations. If annotation support is
added to JRuby in the future, it may be possible to eliminate the class
(and perhaps the interface as well). It seems also likely that Java EE
container vendors will add direct support for JRuby-based EJBs if there is
demand for it.

The class in Example 4-5 is a stateless session bean (SLSB), but this
same technique would hold true for stateful session beans (SFSBs) and
message-driven beans (MDBs). You can also easily expose this EJB
through a web service interface by adding some additional annotations,
seen in Example 4-7.

Example 4-7. JRuby EJB with web service annotations

package org.jrubycookbook.j2ee. ej b;

i nport javax.jws.\WbMet hod;
i nport javax.jws.WbService;

[l Other inports from Recipe 4-5

@ebServi ce(target Namespace = "http://jrubycookbook. org/ejb")
&>t at el ess
public class ReverserBean inplenments Reverser {

private Ruby ruby;
[l init() method from Exanple 4-5

@\ébMet hod
public String reverse(String string) {
RubyString nessage = ruby. newString(string);
ruby. get d obal Vari abl es() . set ("$nmessage"”, nessage);
return
ruby. eval Scriptl et ("$nmessage. reverse").asJavaString();

}

Figure 4-2 shows this web service being tested through the web service
testing interface included with the Sun Java System Application Server.

Figure 4-2. Testing the JRuby EJB web service

reverse Method invocation

Method parameter(s)
| Type | Walue
Ijava.lang.St:ring |JRuh5.r Cookbook

Method returned
javalang String : "koohkeoC vhuRJ"

SOAP Reguest

“uml wersion="1l.0" ancoding="UOTF-&""7>
<3:Enwelope smlns: 3="http:/f schemas .xml=cap.crgf soap/ envel opef "
<% :Header, >
<8:Eody>
“n=f:rever=se mmln=:n=Z="http://jrubycockbock_orgl =jb">
<arglxJBuby Cockbooks/ arglz
in=F ravar=an
</ B3 :Bodyr
{fS:Envelope}

SOAP Response

“trml wersion="l1.0" encoding="UOTF-&"7>
<3:Enwelope smlns: 3="http:/f schemas .xml=scap.orgf scoap/ envel opef "
<3 :EBody>
“n=f:reverseRe=ponse wmlns:nsf="http:// jrubycockbock _orgl = jb ">
<returnrkoobkool ybuRJ{fretu:n}
{fnsz:rcvcrscRcsponsc}
{fS:Body}
</ 3:Envreloper

4.5 4. See Also

e Section 3.10"

4.6. Defining Spring Beans in JRuby
4.6.1. Problem

You use the Spring Framework as a Dependency Injection (DI) container
and wish to define some of your beans with JRuby.

4.6.2. Solution

Create a Java interface that defines the methods you will be implementing
in your Ruby class. Use j r uby element within the | ang namespace in the

Spring XML configuration to define a bean using both the interface and
the location of the Ruby script. JRuby beans can also be configured using
the | ang: property element. A simple JRuby bean definition can be seen
in Example 4-8.

Example 4-8. Simple Spring JRuby bean definition

1 <?xm version="1.0" encodi ng="UTF-8"?>
2 <beans xm ns="http://ww. spri ngframework. org/ schena/ beans"

3 xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

4 xm ns: | ang="http://ww. springframework. org/ schema/ | ang"
5

xsi :schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
6 http://ww. springframework. org/ scherma/ beans/ spri ng-
beans. xsd

7 http://ww. springframewor k. org/ schena/ | ang

8 http://ww. spri ngfranmewor k. org/ schena/ | ang/ spri ng-

| ang. xsd" >

9

10 <l ang:jruby id="rubyLi stener"

11 script-interfaces="org.jrubycookbook.chO4. Li stener"
12 script-

sour ce="cl asspat h: org/ j rubycookbook/ ch04/ruby _|istener.rb">

13 <l ang: property nane="prefix" value="(from Ruby) " />
14 </l ang:j ruby>

15

16 </ beans>

In this example, lines 2 through 8 are the boilerplate Spring configuration
needed to set up both the default and | ang namespaces. Lines 10
through 14 contain the actual bean definition including the setting of a
property named pr efi x. The interface is defined in Example 4-9 and the
Ruby implementation is in Example 4-10.

Example 4-9. Simple interface for Spring bean

package org.|jrubycookbook. ch04;

public interface Listener {
public void recei veMessage(String nessage);
}

Example 4-10. Ruby script referenced from Spring
configuration

cl ass RubylLi st ener
setter for prefix property
def setPrefix(p)
@refix = p
end

inplenmentation of Listener interface
def recei veMessage(s)
puts "#{ @refix}CGot Message: #{s}"
end
end

RubyLi st ener. new

Note that for Spring to set the prefi x property, a set Prefi x() method
must be defined. If we were writing traditional Ruby code, this method
would likely be called pr ef i x= and you would have generated the method
with attr_accessor orattr_writer. But because Spring is based on the
JavaBean standard, it expects a method named set Prefi x() .

To use JRuby with Spring, your classpath must include the following JAR
files, all of which are included in the Spring distribution:*t

' This is for Spring 2.5.1. Check the documentation for other versions.

e spring.jar

e asm-2.2.3.jar

e backport-util-concurrent.jar
e cglib-nodep-2.1_3.jar

e commons-logging.jar

e jruby.jar

____@ At the time of writing, Spring's support for JRuby was
not compatible with the 1.1; only JRuby 1.0 is
supported.

4.6.3. Discussion

Spring's dynamic language support, which currently also includes support
for Groovy and BeanShell in addition to JRuby, works by creating a

dynamic proxy object that implements the interfaces listed in the scri pt -
i nt er f aces attribute. This proxy receives the actual method calls and
delegates to the object created by the script file referenced in

the scri pt - sour ce attribute. The syntax of the script-source attribute is
the standard Spring syntax for accessing resources. In Example 4-8, we
are referencing a Ruby source file in the classpath, but this could just
have easily used a filesystem resource, a URL resource, or, if appropriate,
a servlet context resource.

Spring beans written in a dynamic language require some features from
the Appl i cati onCont ext interface, so a

plain BeanFact ory implementation such as that used in Example 4-

11 won't work.

Example 4-11. Using JRuby within a BeanFactory won't work

package org.jrubycookbook. ch04;

i nport org.springfranmewor k. beans. factory. xm . Xml BeanFact ory;
i nport org.springframework. core.io.C assPat hResour ce;

public class ListenerBootstrap {
public static void nain(String[] args) {
Cl assPat hResource config =
new
Cl assPat hResource("org/jrubycookbook/ ch0O4/1i stener _beans. xm ");
Xm BeanFactory ctx = new Xm BeanFact ory(config);

Li stener |istener = (Listener)
ct x. get Bean("rubylLi stener");
i stener.recei veMessage("Hell o");
}

Instead, we have to use an Appl i cati onCont ext implementation, such
as the Cl assPat hXm Appl i cati onCont ext class used in Example 4-12.

Example 4-12. Using JRuby within an ApplicationContext

package org.|jrubycookbook. ch04;

i nport
org. spri ngframewor k. cont ext . support. Cl assPat hXm Appl i cati onCont ex
t;

public class ListenerBootstrap {
public static void nain(String[] args) {
String config =
"org/jrubycookbook/ ch04/1i st ener _beans. xm ";
Gl assPat hXm Applicati onContext ctx =
new Cl assPat hXm Appl i cati onCont ext (confi g);

Li stener |istener = (Listener)
ct x. get Bean("rubylLi stener");
| i stener.recei veMessage("Hello0");
}

Looking back at Example 4-10, you can see that this script both defines a
Ruby class named RubyLi st ener and returns a new instance of that
class. This wasn't actually necessary in this case; Spring would be capable
of recognizing that the script had created a class and would generate a
new instance of that class if one had not been provided. However, it is
good practice to include this command because Spring may not always
create a new instance of the correct class. The best example of this is
when the reference Ruby file contains multiple class definitions, as

in Example 4-13.

Example 4-13. Ruby script that will confuse Spring

cl ass RubylLi st ener
def setPrefix(p)
@refix =p
end

inplenmentation of Listener interface
def recei veMessage(s)
puts "#{ @refix}CGot Message: #{s}"
end
end

cl ass O her RubyLi st ener < RubyLi st ener
inplenmentation of Listener interface
def recei veMessage(s)
puts "#{ @refix} Gt A Message: #{s}"
end
end

As a result, it's simpler to always use the new command on the last line of
your Ruby script to ensure that Spring has access to the correct object.

4.6.4. See Also

e The Spring Framework website, http://www.springframework.org/

4.7. Creating Refreshable JRuby Spring
Beans

4.7.1. Problem

Your Spring container includes beans that you want to reload when their
underlying definitions change.

4.7.2. Solution

Add arefresh-check- del ay attribute to the | ang: j r uby element in your
Spring XML configuration file. The use of this attribute tells Spring to
watch the resource referenced in the scri pt - sour ce attribute. The value
indicates how many milliseconds will pass between scans of the resource
for changes.

Alternatively, you can apply a default value for the refresh-check-delay
attribute by using the def aul t s element in the | ang namespace. For

example, to apply a one second delay to all dynamic-language beans in
the Appl i cat i onCont ext , include this element in your XML configuration
file:

<l ang: defaul ts refresh-check-del ay="1000"/ >

4.7.3. Discussion

One simple way to demonstrate this refreshable bean functionality is to
use Spring's support for Java Timer objects. The Spring configuration XML
in Example 4-14 includes the samer ubyLi st ener bean defined

in Example 4-10 and adds an implementation of j ava. uti | . Ti mer Task to
output the current time. It also includes the Spring plumbing necessary to
invoke this task every five seconds.

Example 4-14. Refreshable JRuby Spring bean called by a
TimerTask

<?xm version="1.0" encodi ng="UTF-8""?>

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: | ang="http://ww. spri ngfranmework. org/ schena/ | ang"

xsi :schemalLocati on="htt p://ww. spri ngframewor k. or g/ schema/ beans
http://ww. spri ngfranmewor k. or g/ schenma/ beans/ spri ng-
beans. xsd
http://ww. springframework. org/ schema/ | ang
htt p: //www. spri ngfranewor k. org/ schema/ | ang/ spri ng-
| ang. xsd" >

<l ang: defaults refresh-check-del ay="1000" />

<l ang:jruby id="rubyLi stener"
script-interfaces="org.jrubycookbook. chO4. Li st ener
script -
sour ce="cl asspat h: org/ j rubycookbook/ ch04/ruby_|istener.rb">
<l ang: property nane="prefix" value="(fromTiner) " />
</l ang:j r uby>

<bean i d="sendDat eTask"
cl ass="org. j rubycookbook. ch04. SendDat eTask" >
<property nanme="listener" ref="rubylListener"/>
</ bean>

<bean i d="schedul edTask"

cl ass="org. spri ngfranmewor k. schedul i ng. ti nmer. Schedul edTi ner Task" >
<property name="period" val ue="5000" />
<property name="ti nmer Task" ref="sendDat eTask" />
</ bean>

<bean id="ti nmer Factory"

cl ass="org. spri ngfranmewor k. schedul i ng. ti mer. Ti mer Fact or yBean" >
<property nanme="schedul edTi ner Tasks" >
<list>
<ref bean="schedul edTask" />
</list>
</ property>
</ bean>
</ beans>

The SendDat eTask class, seen in Example 4-15, simply formats the
current date and passes it to the injected implementation of
the Li st ener interface.

Example 4-15. The SendDateTask class

package org.|jrubycookbook. ch04;

inport java.util.Date;
i nport java.util.TimerTask;

public class SendDat eTask extends Ti nerTask {
private Listener |istener;
public void setListener(Listener listener) {

this.listener = |istener;
}

public void run() {
i stener.receiveMessage(String.format ("% T", new
Date()));

}
}

With these classes in place, we can start up

the Appl i cati onCont ext with the code in Example 4-16. Once it is
running, changes to the ruby_listener.rb file can be seen with each
execution ofSendDat eTask.

Example 4-16. Starting an ApplicationContext with Timer
support

package org.jrubycookbook. ch04;

i mport
or g. spri ngfranmewor k. cont ext. support. Cl assPat hXm Appl i cati onCont ex
t;

public class TinedBootstrap {
public static void nmain(String[] args) {
String config = "org/jrubycookbook/ chO4/timer_beans. xm ";
G assPat hXm Applicati onContext ctx =
new C assPat hXm Appl i cati onCont ext (config);

For example, we could change the RubyLi st ener class to reverse the
messages:

cl ass RubylLi st ener
def setPrefix(p)

@refix =p
end

inplementation of Listener interface
def recei veMessage(s)
puts "#{ @refix}CGot Message: #{s}".reverse
end
end

RubyLi st ener. new

Making this change while the Appl i cati onCont ext is running can
produce output like this:

(from Tinmer) Got Message: 21:21:48
(from Tinmer) Got Message: 21:21:53
85:12:12 :egasseMtoG)rem T norf(

4.8. Defining JRuby Spring Beans Inline
4.8.1. Problem

You're using Spring and want to define beans in JRuby directly inside your
Spring XML configuration file instead of in an external file.

4.8.2. Solution

Instead of providing a resource location with a scri pt - sour ce attribute,
you can include JRuby script inside an i nl i ne-scri pt element in
the | ang namespace as seen in Example 4-17.

Example 4-17. JRuby script inside an inline-script element

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://ww. springfranmework. org/ schema/ beans”
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: |l ang="http://ww. springfranmework. org/ schenma/| ang"

xsi :schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schenma/ beans
http://ww. spri ngframework. org/ schenma/ beans/ spri ng-
beans. xsd
http://ww. springframework. org/ schema/ | ang
htt p: //ww. spri ngfranewor k. org/ schema/ | ang/ spri ng-
| ang. xsd" >

<l ang:jruby id="rubyListener"
script-interfaces="org.jrubycookbook.chO4.Li stener">
<l ang: i nline-script><![CDATA]
cl ass RubylLi st ener
def setPrefix(p)
@refix = p
end

inplenmentation of Listener interface
def recei veMessage(s)
puts "#{ @refix}CGot Message: #{s}"
end
end

RubyLi st ener. new
]1></lang:inline-script>
<l ang: property name="prefix" value="(from Ruby) " />
</l ang:j ruby>

</ beans>

4.9. Applying Spring-Aware Interfaces to
JRuby Objects

4.9.1. Problem

Your Spring Appl i cati onCont ext contains JRuby-based beans that need
to implement one of the Awar e interfaces, such
as or g. spri ngfranmewor k. cont ext. Appl i cati onConlltexlltAware.

4.9.2. Solution
Include implementations of the methods defined in the interface in your

JRuby class and add the appropriate interface name to the scri pt -
i nt erf aces attribute.

4.9.3. Discussion
The Spring Framework includes a number of interfaces that can be used
to make a bean aware of its surroundings. Generally, these interfaces

define a single method that is called by the container during initialization.
Here is a sampling of these interfaces:

org. springfranmewor k. cont ext. Appl i cati onCont ext Awar e

The Appl i cationCont ext instance that contains this bean is passed
to the sielitalplpllillcationContext () Method.

or g. spri ngfranmewor k. beans. f act ory. BeanFact or yAwar e

The BeanFact ory instance that contains this bean is passed to
the setBeanF lallclitllolrlly () method.

or g. spri ngframewor k. beans. f act ory. BeanNaneAwar e

The name of this bean in the containing BeanFactory is passed to
the set BeanNane() method.

org. spri ngfranewor k. cont ext . Resour ceLoader Awar e

A Resour ceLoader , which can resolve a sString identifier to
a Resour ce object, is passed to the set Resour ceLoader () method.

org. springfranewor k. cont ext . MessageSour ceAwar e
A MessageSour ce, which can resolve a message code and

parameters to an appropriately internationalized message, is
passed to the set MessageSour ce() method.

or g. spri ngfranmewor k. web. cont ext . Ser vl et Cont ext Awar e

A j avax. servl et. Servl et Cont ext object is passed to
the set Servl et Cont ext () method.

Example 4-18 shows an inline implementation of
the BeanNameAwar e interface.

Example 4-18. Inline JRuby Spring bean that implements the
BeanNameAware interface

<l ang:jruby id="rubylLi stener"
script-interfaces="org.jrubycookbook.chO4. Li stener,
or g. spri ngframewor k. beans. f act ory. BeanNaneAwar e" >
<l ang:inline-script><![CDATA
cl ass RubylLi st ener
inplenmentati on of BeanNaneAware interface
def set BeanName(beanNane)
@eanNane = beanNane
end

inplenmentation of Listener interface
def recei veMessage(s)
puts "Hello, |I'm naned #{ @eanNane}"
puts "#{ @refix} Gt Message: #{s}"
end
end

RubyLi st ener. new
]1></1ang:inline-script>
</l ang:jruby>

As implementations of these interfaces are generally the same—just save
the injected object into an instance variable—they are a good case for
using Ruby modules. Example 4-19 contains a Ruby module

named Spri ng that includes boilerplate implementations of the interfaces
listed earlier in this recipe.

Example 4-19. Ruby module implementing Spring aware
interfaces

nodul e Spring
inplenmentation of ApplicationContextAware interface
nodul e Appl i cati onCont ext Awar e
def set Appli cati onCont ext (ctx)
@ppl i cati onContext = ctx
end
end

inplementati on of BeanFactoryAware interface
nodul e BeanFact or yAwar e
def setBeanFact ory(bf)
@eanFactory = bf
end
end

inpl enmentati on of BeanNaneAware interface
nodul e BeanNaneAwar e
def set BeanName(beanNane)
@eanNane = beanNane
end
end

inplenmentati on of ResourcelLoader Aware interface
nodul e Resour ceLoader Awar e
def set ResourcelLoader (| oader)
@ esour ceLoader = | oader
end
end

inplementati on of MessageSourceAware interface
nodul e MessageSour ceAwar e
def set MessageSour ce(source)
@essageSour ce = source
end
end

inplementation of Servl et ContextAware interface
nodul e Servl et Cont ext Awar e
def set Servl et Cont ext (ct x)
@ervl et Context = ctx
end
end
end

Using this module in a Ruby class is simply a matter of including the
appropriate module, as in Example 4-20.

Example 4-20. Using a Spring module

require "spring.rb"

cl ass RubylLi st ener
i ncl ude Spring:: BeanNameAwar e

inplenmentation of Listener interface
def recei veMessage(s)
puts "Hello, |I'm named #{ @eanNane}"
puts "#{ @refix}CGot Message: #{s}"
end
end

Determining JRuby's Load Path

Once you start including external files in your JRuby scripts, as

in Example 4-20, it becomes critical to have a handle on your load
path. Depending on how you invoke JRuby, the load path may be
different when JRuby is used inside the Spring container than
when JRuby is run from the command line. Here is a simple JRuby
Spring bean that will output the load path when the container
loads:

<l ang:jruby id="1oadPat hQutputter" script-interfaces=\
"org.springframework. beans. factory.InitializingBean">
<l ang:inline-script><![CDATA
cl ass LoadPat hQut putter
def afterPropertiesSet ()
puts "Ruby Path is #{$:.join("';")}"
end
end

Li bQut putter. new
]1></lang:inline-script>
</l ang:j ruby>

You can use the j ava. honme system property to change JRuby's
load path. See Section 3.2 for details.

4.9.4. See Also

e Section 3.2"

4.10. Creating Spring MVC Controllers with
JRuby

4.10.1. Problem

Redeploying a Java controller in Spring MVC can be time-consuming and
disruptive to development. This is especially the case for web applications
with many modules and/or large amounts of data loaded on startup. You
would like to modify your controller code without reloading the running
web application.

4.10.2. Solution

Spring's dynamic language support can speed up the development of
Spring MVC applications by allowing you to define the controllers as JRuby
objects. Not only can you eliminate the compilation step needed for Java
development, but with Spring's refreshable bean feature (see Section
4.6), controller classes can be updated and redefined at runtime without a
redeployment of the full web application. Open the Spring configuration
file and create a JRuby controller by defining a Spring bean using the
dynamic language elements as described in Section 4.5 and Section 4.6.
Set the value of scri pt -

i nterfaces to org. springframewor k. web. servl et. nvc. Control |l er and
scri pt - sour ce to the location of a Ruby file that will define and
instantiate the controller class. Note that the scri pt s- sour ce value is
relative to the web application folder. Example 4-21 shows a Spring
configuration file with a JRuby controller named hel | ocontrol | er that
renders a JSP page.

Example 4-21. Spring configuration file with simple JRuby
controller

<beans xm ns="http://ww. springframework. org/ scherma/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: | ang="htt p://ww. spri ngf ramewor k. org/ schenma/ | ang"

xsi : schemalLocati on="http://ww. springframework. org/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans-2. 5. xsd
http://ww. springframework. org/ schema/ | ang
htt p: //wwv. spri ngfranmewor k. or g/ schenma/ | ang/ spri ng-1ang-2. 5. xsd">

<l ang:jruby id="hellocontroller" refresh-check-del ay="3000"
script-source="/WEB- | NF/ ruby/ hell o.rb"
script -
i nterfaces="org. springframework. web. servl et.nvc. Controller">
</l ang:j ruby>

<bean i d="vi ewResol ver"

cl ass="org. spri ngfranmewor k. web. servl et. vi ew. | nt er nal Resour ceVi ewR
esol ver" >
<property name="vi ewd ass"
val ue="org. spri ngframewor k. web. servl et. view. Jst| View'/>
<property name="prefix" val ue="/WEB-INF/jsp/"/>
<property nanme="suffix" value=".jsp"/>
</ bean>

<bean i d="url Mappi ng"

cl ass="org. spri ngfranmewor k. web. servl et. handl er. Si npl eUr | Handl er Ma
ppi ng" >
<property name="mppi ngs" >
<pr ops>
<prop key="/hell o.htni>hell ocontroll er</prop>
</ props>
</ property>
</ bean>
</ beans>

Open the Ruby file specified by the scri pt - sour ce value and create a
JRuby class with a handl eRequest method that takes two arguments,
the Ht t pSer vl et Request and Htt pSer vl et Responseobjects.

The handl eRequest method is called on each web request and returns a
Java Mbdel AndVi ew object that contains the view name and model map.
The last statement in your Ruby file must instantiate the new controller
class. Example 4-22 shows a JRuby controller that adds a few values to
the model and renders the hello.jsp template.

Example 4-22. JRuby class as a Spring MVC controller

i ncl ude Java
i nport org.springfranmewor k. web. servl et. Model AndVi ew

class Hell oController
def handl eRequest (request, response)
mav = Model AndVi ew. new "hel | 0"
mav. add_obj ect (" exanpl e", "hel l o!' ")

mav. add_obj ect (" exanpl e_hash",{"foo"=>"bar", "al pha"=>"beta"})
return mav
end
end

Hel | oControl | er. new

The JSP page in Example 4-23 uses the standard syntax to access the
model data and works independently from the controller's choice of
implementation language. The Ruby hash that was added to the
model, exanpl e_hash, is conveniently converted into a Java map and
accessed using the JSP shorthand for outputting maps.

Example 4-23. Simple JSP template

<%@ page content Type="text/htm ; charset =UTF-8" | anguage="j ava" %

<IDOCTYPE htm PUBLIC "-//WBC//DTD HTM. 4.01 Transitional//EN'
"http://ww. w3.org/ TR/ htm 4/ 1 oose. dt d" >
<htm >
<head>
<neta http-equiv="Content-Type" content="text/htm;
char set = SO 8859- 1" >
<title>Wy Sanple JSP</title>
</ head>
<body>
String val: ${exanpl e}

Hash val foo: ${exanpl e_hash. foo}

Hash val noo: ${exanpl e_hash. al pha}

</ body>
</htm >

Redeploy your controller by overwriting the existing Ruby file in your web
application. Update the file in the web application folder if you are
deploying an expanded WAR. Otherwise, locate the temporary folder
where the container has exploded your WAR or EAR file and update the
controller. Consult the documentation of your application server because

this location differs for each server and platform; it is usually found in a
temporary file area or in the same folder as the WAR. The location of the
expanded WAR is often written to the console on startup and can be
found in the application server's logs.

4.10.3. Discussion

JRuby controllers can also be defined in your Spring configuration file
using the inline bean support (see Section 4.6).

The i nli necontrol | er bean in Example 4-24 contains the same code
that would normally be in the Ruby file specified by the scri pt -

sour ce value. It's not advised to build your entire web application using
this technique for code management reasons and the loss of the
redeployment feature, but this feature may be useful for the quick
prototyping of controllers or adding some simple redirection logic, which
is demonstrated in Example 4-24.

Example 4-24. Inline JRuby controller definition

<l ang:jruby id="inlinecontroller"
scri pt -
i nterfaces="org.springfranmework. web. servlet.mc. Controller">
<l ang:inline-script>
i ncl ude Java
i mport org.springframework. web. servl et. Model AndVi ew
cl ass MySecController
def handl eRequest (request, response)
Model AndVi ew. new "redirect:/hello. htnf
end
end
MySecControl | er. new
</lang:inline-script>
</l ang:j ruby>

4.10.4. See Also

e Section 4.6"
e Section 4.7"
e Section 4.8"

4.11. Using Hibernate with JRuby
4.11.1. Problem

You would like to use Hibernate in your JRuby application.

4.11.2. Solution

Ideally, working with a Hibernate Data Access Object (DAO) should be no
different from any other Java class. The main concern for JRuby
developers is the use of Java Generics and JRuby’s inability to create
classes or call methods with input arguments that use the Generics
feature. Hibernate gives Java developers a lot of flexibility in the
implementation of the DAO and many leverage Java Generics to reduce
the size of classes and method counts. However, the typical pattern for
creating DAOs in the most popular online tutorials do not expose the
Generics as part of the DAOs' public API, even though they are used
internally. They are commonly created through a factory interface or by
instantiating wrapper DAOs for classes. The JRuby program in Example 4-
25 accesses the Per sonDao through a factory while the Event Dao is
directly instantiated.

Example 4-25. Accessing Hibernate Data Access Objects

i ncl ude Java

i nport exanpl e. dao. Per sonDao
i nport exanpl e. dao. DaoFactory
i mport exanpl e. dao. Event Dao

i mport exanpl e. nodel . Per son

i mport exanpl e. nodel . Event
import util.H bernateltil

event _dao = Event Dao. new

event dao. set _sessi on

Hi bernateUtil::get_session_factory.get_current_session

dao. creat e(Event. newm("JRuby Meeting",java.util.Date.new))
dao.find_all.each do |e| puts "#{e.get title } #{e.get_date}";
end

person_dao = DaoFactory.instanti ate(PersonbDao. cl ass)
dao. creat e(Per son. new("Justin", "Wod"))

dao. creat e(Per son. new("Bri an", "Henry"))

dao.find all.each do |p| puts "#{p.get firstnane}
#{p.get _|astnane}"; end

4.11.3. Discussion

The Hibernate session is obtained through a static method in

the Hi bernateUti| class and manually injected into the Event Dao class.
It's a common Hibernate design pattern to provide access to the
Hibernate session factory through a static method in a global utility class.
The Hi bernateUti| class becomes the common point of configuration and
management and can hide many of the mapping details from your DAOs.

Database transactions can be nicely expressed using a Ruby function that
yields to an inputted block. The block contains the database interaction
code and is evaluated between the enclosing parent function’s call to
initialize and end the transaction. Errors can be detected and handled in
the transaction function and kept out of the business code. The result is
clean API that eliminates the verbose and repetitive transaction calls and
an enhanced clarity of the transactional code, which is now identified
through a function metaphor rather than explicit API calls to begin and
end the transaction. Example 4-26 defines a Tr ansact i onHel per module
that contains functions to initiate a standard JDBC transaction and the
more universal Java Transaction APl (JTA) transaction. The example also
includes a controller that demonstrates the use of the module and how to
easily add either transaction mechanism to your database access code.

Example 4-26. Using blocks to define transactions

i ncl ude Java

inmport util.HibernateUtil
i nport javax.naning.lnitial Context

nodul e Transacti onHel per

def with_transaction
begi n
tx =
Hi bernateUtil.session_factory. current_session. begi nTransacti on
yield
tx. comm t
H bernateUtil.session _factory.current_session.cl ose
rescue
tx. roll back
end
end

def with_jta transaction
begi n
ctx = Initial Context.new
utx = ctx.lookup("java: conp/ User Transacti on");
ut x. begi n();
yield
ut x. conmmi t
rescue
ut x. r ol | back
end
end
end

class UserController
extend Transacti onHel per
def create
wi th_transaction do
@d = User.create("Tont')
end

with jta transaction do
tom= User.find by id(@d)
end
end
end

4.12. Using the Java Persistence API with
JRuby

4.12.1. Problem

You want to use the Java Persistence APl (JPA) in your JRuby application.

4.12.2. Solution

Use the static JPA

method Per si st ence. cr eat eEnti t yManager Fact ory() to generate a
factory for your persistence unit. A call to the

factory's creat eEnti t yManager () method generates a

newEnt i t yManager class, which is your primary tool for accessing the
Persistence API. The Enti t yManager is analogous to

Hibernate's Sessi on or Toplink's C i ent Sessi on object and contains the
methods to interact with the database and your model objects.

The Enti t yManager object is not threadsafe and shouldn't be used with
multiple concurrent requests. It is designed to be used and discarded in a
relatively short amount of time and not as a long-running software
component. Example 4-27 shows a JRuby application that creates a

few User objects and then queries the database to confirm that they were
successfully added.

Example 4-27. Example JPA access from JRuby

i ncl ude Java

i nport javax. persi stence. Persi stence
i nport cookbook. User

def with trans(em
t = emget Transaction();
begin
t. begin()
yield
t.conmit
ensure
t.rollback if t.isActive
end
end

enf = Persistence. createEntityManagerFactory("hell o-world")
em = enf.creat eEntityManager

with trans(en) do
u =
User. new("stephen", "l ee", "sl ee", "password", "st ephen@ra. com')
u2 =
User. new"stephen","smth","ssmth", "password", "ssm t h@ra. cont')
em per si st (u)
em per si st (u2)
end
guery = emcreateQuery("select u fromUser u where u.firstname =
cfirstnane").
guery.set paranmeter("firstnane", "stephen").
hu = query.get result |ist

hu. each do | u|
puts "found #{u.firstname} #{u.lastnanme}"

end
em cl ose
enf . cl ose

4.12.3. Discussion

The example demonstrates the use of a block once again (see Section
4.10) to express a JPA transaction. This helper method also automatically
rolls back the transaction if the commit should fail.

4.12.4. See Also

e Section 4.11"

4.13. Making SOAP Calls

Credit: Steven Shingler

4.13.1. Problem

You need to invoke a remote method through a SOAP-based web service.

4.13.2. Solution

Use the Mule client module, available from http://mule.mulesource.org,
and a Ruby XML parsing library such as REXML or Hpricot. Example 4-
28 uses Mule to make a request to one of the web services provided by
the National Oceanic and Atmospheric Administration (NOAA).

Example 4-28. Making a SOAP request with the Mule client
module

i ncl ude Java

require "rexm /docunent™
i mport org. nul e. nodul e. client. Mil eClient

url =
"axis: http://ww. weat her. gov/forecasts/xm /SOAP_server/ ndf dXM.ser

ver. php"
nmet hod = "met hod=Lat LonLi st Zi pCode"
client = Mul eClient.new

nmessage = client.send("#{url}?#{nethod}", "10036", nil)
doc = REXM.:: Docunent . new nessage. payl oad

puts doc.root. el enents[1].text

exit

To run this script, Mule and several dependencies need to be added to the
classpath. Because of classloader requirements, these dependencies must
be on the system classpath (e.g., through the use of

the CLASSPATH environment variable); they cannot be added to the
classpath by using JRuby's extension of the r equi r e method as described
in Section 1.8. For this particular script, the dependencies can be added
to the classpath using these commands:

export MJULE LIB=/opt/mule/lib

export CLASSPATH=$CLASSPATH. $MULE LI B/ opt/activation-1.1.jar
export CLASSPATH=$CLASSPATH: SMULE LI B/ opt/ axi s-1.4.jar

export CLASSPATH=$CLASSPATH: $MULE LI B/ opt/ axi s-j axrpc-1.4.jar
export CLASSPATH=$CLASSPATH. $SMULE_ LI B/ opt/ backport-util -
concurrent-3.1.jar

export CLASSPATH=$CLASSPATH. $MULE_LI B/ opt/ commons- beanutil s-
1.7.0.jar

export CLASSPATH=$CLASSPATH. $MULE LI B/ opt/ commons-codec-1. 3. j ar
export CLASSPATH=$CLASSPATH. $MULE_LI B/ opt/ conmons- col | ecti ons-
3.2.jar

export CLASSPATH=$CLASSPATH. $MULE LI B/ opt/ commons- di scovery-
0.2.jar

export CLASSPATH=$CLASSPATH: $MULE_LI B/ opt/ conmons- htt pcli ent -
3.1.jar

export CLASSPATH=$CLASSPATH: SMULE LI B/ opt/ commons-io-1.3.1.jar
export CLASSPATH=$CLASSPATH: $SMULE_LI B/ opt/ commons-| ang- 2. 3. j ar
export CLASSPATH=$CLASSPATH: $MULE LI B/ opt/ commons- | oggi ng-
1.1.1.jar

export CLASSPATH=$CLASSPATH. $MULE LI B/ opt/ commons-pool -1. 4. j ar
export CLASSPATH=$CLASSPATH: $MULE_LI B/ opt/dom4j-1.6.1.jar
export CLASSPATH=$CLASSPATH: $MULE_LI B/ opt/ ger oni no-j 2ee-
connector_1.5 spec-1.1.jar

export CLASSPATH=$CLASSPATH: $MULE LI B/ opt/ ger oni no-

servlet 2.5 spec-1.1.jar

export CLASSPATH=$CLASSPATH. $MULE_LI B/ opt/j axen-1.1.1.jar
export CLASSPATH=$CLASSPATH: $MULE LI B/ opt/j ug-2.0.0-asl.jar
export CLASSPATH=$CLASSPATH: SMULE LI B/ mul e/ mul e-core-2.0. 2.j ar
export CLASSPATH=$CLASSPATH: $SMULE_LI B/ mul e/ mul e- nodul e-cl i ent -
2.0.2.jar

export CLASSPATH=$CLASSPATH. $MULE_LI B/ mul e/ nul e-transport - axi s-
2.0.2.jar

export CLASSPATH=$CLASSPATH $MJLE_ LI B/ opt/saaj -api-1.3.jar
export CLASSPATH=$CLASSPATH. $MULE LI B/ opt/stax-api-1.0.1.jar
export CLASSPATH=$CLASSPATH $MULE_ LI B/ opt/wsdl 4j-1.6.1.jar
export CLASSPATH=$CLASSPATH. $MULE LI B/ opt/ wst x-asl -3.2.6.j ar

NOTE

The "Full Distribution™ Mule download includes all third-party
dependencies except for Jakarta Commons Logging, which can be
downloaded from http://commons.apache.org/logging/.

4.13.3. Discussion

The send method of the Mul ed i ent class will accept any object as the
message payload. However, care must be taken when passing objects
other than Java primitives or their Ruby equivalents. For these other
types, use the Axis WSDL2Java tool to generate Java classes from the
web service's descriptor:

$ java org. apache. axi s. wsdl . WBDL2Java\
http://ww. weat her. gov/ forecast s/ xm / SOAP_server/ ndf dXM.ser ver. ph
p?wsdl

In Example 4-28, the URL for the NOAA web service endpoint is prefixed
with axi s, indicating to the Mule engine that we wish to use the Axis
library to invoke the web service. By including different and/or additional
dependencies on the classpath, different libraries and different transport
mechanisms can be used.

4.13.4. See Also

e Mule website, http://mule.mulesource.org/

e Apache Axis website, http://ws.apache.org/axis/

e REXML website, http://www.germane-
software.com/software/rexml/

e Hpricot website, http://code.whytheluckystiff.net/hpricot/

4.14. Simplifying LDAP Access

4.14.1. Problem

You are looking up entries and attributes in an LDAP directory through
JNDI and are looking to simplify the API.

4.14.2. Solution

Use JRuby's open class feature (described in Section 1.10) to add helper
methods to the com sun. j ndi . | dap. LdapCt x class.

4.14.3. Discussion

Although powerful, the JNDI API can frequently feel unnecessarily
verbose. For example, the Java code required to access a single attribute
value is awkward:

/1 Lookup the entry

LdapCont ext entry =

ctx. | ookup("ui d=nt s, ou=Peopl e, dc=um ch, dc=edu") ;

/[l First, get all of the Attributes associated with this entry.
Attributes attributes = entry. getAttributes("");

/1 Then get a single naned Attri bute.

Attribute attribute = attributes.get("nail");

/'l Then actually get the val ue.

String value = (String) attribute.get();

For an attribute with multiple values, it's even worse:

/1 Lookup the entry
LdapCont ext entry =
ctx. | ookup("ui d=nt s, ou=Peopl e, dc=um ch, dc=edu") ;
/[l First, get all of the Attributes associated with this entry.
Attributes attributes = entry. getAttributes("");
/1 Then get a single naned Attri bute.
Attribute attribute = attributes.get("nail");
/1 Then get a Nam ngEnuneration of the attribute val ues.
Nanmi ngEnuneration ne = attribute.getAll ();
/'l Create a list, |oop through the Nanm ngEnunerati on,
/1 and add each value to the I|ist
Li st<String> values = new ArrayLi st<String>();
whil e (ne. hashMre()) {
val ues. add(ne. next ());
}

Example 4-29 shows two methods being added to the LdapCt x class,
which simplify this API significantly.

Example 4-29. Adding methods to the LdapCtx class

i ncl ude Java
i nport com sun. j ndi .| dap. LdapCt x

cl ass LdapCt x
def get _attribute val ue(key)
get _attributes("", [key].to_ java(:string)).get(key).get
end
def get _attribute_val ues(key)
val ues = []
enum = get _attributes("",
[key].to_java(:string)).get(key).get_all
whi |l e enum has_nore
val ues << enum next
end
return val ues
end
end

Adding these methods makes the following code to access the LDAP
attributes:

entry = ctx.lookup("uid=nts, ou=Peopl e, dc=umni ch, dc=edu")

p "Email = #{entry.get_attribute_value("mil")}"

entry.get _attribute_val ues("cn").each do | nane|
p "Name = #{nanme}"

end

For Example 4-29 to work, you must use Sun's LDAP JNDI support from
the package com sun. | dap. j ndi . Typically, this is done by creating a
JNDI Cont ext , as shown in Section 4.2. If you are using a different LDAP
library, you can easily adapt the listing in Example 4-29 to the library. All
you need to do is discover the name of the class that

implementsj avax. nam ng. di rect ory. Di r Cont ext . You can easily

use j i rb for this:

$jirb

rb(mai
rb(mai
rb(mai
rb(mai
rb(mai
rb(mai
rb(mai
rb(mai
rb(mai
rb(mai
rb(mai
rb(mai

. 001:
:002:
: 003:
: 004:
: 005:
: 006:
: 007:
- 008:
- 009:
- 010:
:011:
:012:

0>
0>
0>
0>
0>
1*
1*
l*
l*
1>
0>
0>

i ncl ude Java

i mport java.util.Hashtable

i mport javax.nam ng.Initial Context

i mport javax.nam ng. Cont ext

env = {
Context:: | Nl Tl AL_CONTEXT_FACTORY
"com sun. j ndi .| dap. LdapCt xFact ory"

Cont ext : : PROVI DER_URL,

"I dap://1dap.itd.um ch. edu: 389"

}
ctx = Initial Context.new(Hashtabl e. new(env))

ct x. | ookup("ui d=nt s, ou=Peopl e, dc=uni ch, dc=edu") . j ava_cl ass
=> com sun. j ndi .| dap. LdapCt x

Chapter 5. User Interface and Graphics

Introduction

Creating Swing Applications

Swing Event Handling

Long-Running Tasks in Swing Applications

Packaging Standalone Applications

Packaging JRuby Web Start Applications

Creating JRuby Applets

Manipulating Images

Creating SWT Applications

Accessing the Native Desktop

Accessing the System Tray

Swing Development with JRuby Domain-Specific Languages
Using the Monkeybars Framework for Swing Development

Creating Qt Applications with JRuby

5.1. Introduction

The JRuby community has paid a lot of attention to web development, but
JRuby is also a powerful tool for client application development. By
allowing the runtime to access the graphics subsystem, JRuby can be
used to create GUI applications with the Abstract Windowing Toolkit
(AWT), Swing and the Simple Widget Toolkit (SWT), as well as newer
projects like Qt Jambi. These toolkits have a rich set of Ul widgets but
they also permit tight integration with the native operating system. A few
recipes in this chapter explain how to use JRuby to create system tray
and desktop components and access native GUI libraries.

Given the popularity of declarative programming and Ruby's
powerful Domain-Specific Language (DSL) building capabilities, it is to be

expected that JRuby developers would explore ways to improve
traditional Java Ul programming. There are several options to facilitate
Swing development: Swigby, Cheri::Swing, Monkeybars, and Profligacy.
Similarly, the Glimmer Eclipse project was created for SWT and
QT::JRuby has built-in DSL support.

The Rawr gem is a useful tool for packaging your JRuby applications
desktop as well as the Web. This gem provides a set of Rake tasks that
can be configured to package your JRuby programs as executable JAR
files, Windows executables, Mac OS X applications, and Web Start
applications. A recipe also describes techniques for using JRuby to build
Java applets.

Image processing is one of the few areas where Ruby runtimes still
depend on native or C code. Use RMagic4J and ImageVoodoo as

alternatives to the popular RMagic and ImageScience gems. You can also
access the Java 2D API for advanced processing needs.

5.2. Creating Swing Applications
5.2.1. Problem

You want to build your Java Swing user interface with JRuby.

5.2.2. Solution

JRuby's runtime support extends to the graphics libraries and Swing
components. Example 5-1 shows a simple Swing application that displays
a message in a window.

Example 5-1. Simple Swing Ul

i ncl ude Java
i nport javax.sw ng. JFramne

frame = JFrane. new "JRuby Message"

frame. default _cl ose operation = JFrane:: EXIT_ON CLCSE
neg = j avax.sw ng. JLabel . new "JRuby Rocks"

frame. content _pane. add nsg

frame. pack

frame.visible = true

5.2.3. Discussion

JRuby can access the entire Swing API, including advanced features like
the Look and Feel libraries. Example 5-2 shows how to toggle between
Swing's default Metal theme and the native platform's Look and Feel.

Example 5-2. Changing the application's look and feel

i ncl ude Java

i mport javax.sw ng. JFrane
i mport javax.sw ng. U Manager

frame = JFrane. new "JRuby Look And Feel"
frame. default _cl ose_operation = JFrane:: EXIT_ON_CLCSE
frame. content _pane.l ayout = java.aw.GidLayout. new(l, 2)

{:metal => "javax.sw ng. pl af. netal . Met al LookAndFeel "
: system => Ul Manager : : get Syst enLookAndFeel Cl assNane} . each do

|1, cl
but = javax.swing.JButton.new!l.to_s
but . add_action_Ilistener do |evt|
U Manager:: |l ook _and feel = ¢

javax. swi ng. Swi ngUtilities::updat eConponent TreeU frane
franme. pack
end
frame. add(but)
end

frame. pack
frane.visible = true

You can access third-party Look and Feel libraries such as Substance or
Napkin by including their JAR files in the Java classpath and referencing
the name of the Look and Feel class.

5.2.4. See Also

e Section 5.3"
e Section 5.4"

5.3. Swing Event Handling
5.3.1. Problem

You want to handle events that are generated by Swing components.

5.3.2. Solution

You generally want to use the block coercion feature in JRuby for most
GUI event processing. Event listeners that define only a single method
such as j avax. awmt . event . Acti onLi st ener can make use of this feature
and allow for very concise event-handling code. The application

in Example 5-3 uses blocks to capture the button click event and changes
to the text field.

Example 5-3. Events handled through block coercion

i ncl ude Java
i mport javax.sw ng. JFrane

frame = JFrane. new "Event Handl er - Coerced"
frame. default_cl ose_operation = JFrane: : EXI T_ON_CLCSE

= javax. sw ng. JText Fi el d. new(10)

= javax. sw ng. JButton. new "search")
.add_action_listener { |evt| puts "searching" };
. docunent . add_docunent |istener { |evt| puts "checking
#{t.text}" };

frane.layout = java.awt.GidLayout.new 1, 2)
franme. add t

frane.add b

frame. pack

frane.visible = true

5.3.3. Discussion

You can also instantiate the listener's Java interface using

the i npl method, passing a block inside which the event is handled. This
approach is useful when the event handler interface contains multiple
methods. Example 5-4 shows how to intercept events from the menu
component.

Example 5-4. Events handled through an instance of a Java
interface

i ncl ude Java
i mport javax.sw ng. JFrane

frame = JFrane. new
frame. default_cl ose_operation = JFrane: : EXIT_ON_CLCSE

bar = javax.sw ng. JMenuBar. new
menu = j avax.sw ng. JMenu. new "Fil e"
item = javax. sw ng. JMenul t em new " Cpen”

nmenu. add_nenu_I i st ener (j avax. swi ng. event. MenuLi stener. i npl do
| met hod, evt|
puts evt.cl ass
case nethod.to_s
when "nenuDesel ect ed"
puts ' hidden'
when "nenuSel ect ed"”
puts 'visible'
end
end)

menu. add item

bar. add nmenu

frame.j menu_bar = bar
frane. pack
frane.visible = true

5.3.4. See Also

e Section 1.10"

5.4. Long-Running Tasks in Swing
Applications

54.1. Problem

The Swing event dispatching thread is responsible for drawing the user
interface and event handling. You want to execute a long-running task
that is initiated from a Swing event but allow the interface to remain
responsive and active.

5.4.2. Solution

The class j avax. swi ng. Swi ngWr ker is designed to run long-running jobs
while allowing for safe Ul updates within the event dispatch thread. The
implementation has evolved over the years through several open source
projects and publications and was formally added to the core Java library
in Java 6. To use Swi ngWr ker , you first create a new class that

extends Swi ngWor ker . Next, implement the

required dol nBackgr ound method with your long-running action. Example
5-5 shows Swi ng\Wor ker in action. Note that the button component is a
member of the worker class because the variable is not accessible within
the scope of the new class.

Example 5-5. Using the SwingWorker for long-running jobs

i ncl ude Java
i mport javax.sw ng. JFrane

frame = JFrane. new " Swi ng Wrker"
frame.default _close_operation = JFrame:: EXIT_ON _CLOSE

start = javax.sw ng.JButton.new"start")

#define the function using a bl ock
start.add_action_|listener do |evt|
cl ass MySwi ngWor ker < javax. swi ng. Swi ngWr ker
attr_accessor :button
def dol nBackground

10.ti nes do
puts "thread #{sel f. hashCode} working"
sl eep(1)
end
sel f.button.text = "Conpl eted"
end

end

sw = MySwi ng\Wor ker . new
sw. button = start
Sw. execut e

end

franme. add start
frame. pack
frame.visible = true

5.4.3. Discussion

As of version 1.1, JRuby cannot instantiate abstract Java classes, so you
must subclass Swi ngWor ker to provide the implementation of the abstract
methods. This is one of the few areas were JRuby results in less fluid and
elegant code than its Java counterpart, but the JRuby team is working on
improving support for abstract classes in future versions of JRuby.

Swi ngWor ker has optional methods that provide advanced features, such
as incremental job progress, job cancellation, and completion detection.

Explore the APl and overload the optional methods in your Ruby class to
use these features.

There is a version of Swi ngWr ker for Java 5 that is conceptually similar
to the Java 6 version, but does not make use of Java generics and uses
slightly different method names. For example, the construct method in
the Java 5 class is analogous to the doBackgr ound method in the Java
6's Swi ng\Wor ker .

5.4.4. See Also

e Section 1.10"

e Java
5 Swi ngWor ker , http://java.sun.com/products/jfc/tsc/articles/threa
ds/src/SwingWorker.java

5.5. Packaging Standalone Applications
5.5.1. Problem

You want to package your JRuby application as an executable JAR file,
Windows executable, or Mac OS X application.

5.5.2. Solution

Install the Rawr gem. This gem was created by David Koontz to simplify
the packaging of JRuby applications for Windows, Mac, Linux, and Java
environments:

$ jruby -S geminstall raw

Set up the Rawr build environment by running the r aw
i nstall command in your build folder, usually the top level of your
project folder:

$ cd /projects/raw denp
$ jruby -S raw install

This command creates two

files: build_configuration.yaml and src/org/rubyforge/rawr/Main.java, a
Java class that instantiates a JRuby runtime and executes your Ruby
application's script. Copy your JRuby application’s files into the newly
created src folder. If your project depends upon custom Java classes,
package those class files into a JAR file and place your project JAR file
along with any JAR files upon which your application depends in

the lib/java folder. You must also have the jruby-complete.jar file in
the lib/java folder.

Open the build_configuration.yaml file and set

the proj ect _nane parameter to the name you would like for the final
executable. Change the nmai n_ruby_fil e parameter to the application's
main execution script name or rename the file to the default script
name, main.rb. Example 5-6 shows a sample configuration file.

Example 5-6. Example Rawr configuration file

Name of the created jar file
proj ect _name: jruby_cookbook_app

Ruby file to invoke when jar is started
mai n_ruby file: jruby cookbook main

5.5.2.1. Executable JAR

Run the rawr : j ar Rake task to generate an executable JAR file:

$ jruby -S rake raw:jar

The resulting files can found in the package/deploy directory. This
includes the main executable JAR file jruby cookbook_app.jar, a
configuration file, and the JRuby runtime JAR file. You will need to include
all the files in the folder along with the JAR files when you distribute your
application. To test the JAR file, run:

$ java —j ar package/ depl oy/jruby_cookbook_app.j ar

5.5.2.2. Windows executable

Run the raw : bundl e: exe Rake task to generate a Windows executable:

$ jruby -S rake rawr: bundl e: exe

The Windows application is composed of an exe file, several JAR files, and
a configuration file found in

the package/native_deploy/windows directory. Distribute and install the
entire contents of the folder and not just the exe file.

5.5.2.3. Mac OS X application

Run the rawr : bundl e: app Rake task to create a Mac OS X application:

$ jruby -S rake raw : bundl e: app

The bundled OS X application folder is called project_name.app and can
be found in the package/native_deploy/mac directory.

5.5.3. Discussion

The build_configuration.yaml file is well documented and contains many
options to customize the build. There are parameters to set the build’s
classpath, the location of the Java and JRuby source files, library file
paths, and the destination folder of the resulting executables. You can
also include arbitrary data or media files in your application by setting
the j ars_dat a_di r sparameter.

Use Rake's - T flag to get a complete list of Rawr's tasks.

The raw : cl ean task would be a good task to run before each build to
avoid bundling unwanted files.

$ jruby -S rake -T

rake raw : bundl e: app # Bundles the jar fromraw:jar into a
native Mac O ..
rake raw: bundl e: exe # Bundles the jar fromraw:jar into a
nati ve W ndo. ..
rake rawr:bundl e: web # Bundles the jar fromraw:jar into a

Java Wb Sta. ..

rake rawr: cl ean # Renpves the output directory

rake rawr:conpile # Conpiles all the Java source files in
the directo...

rake raw:jar # Uses conpil ed output and creates an
executable ja...

rake rawr: prepare # Creates the output directory and sub-

directories,...
rake rawr:setup _consts # Sets up the various constants used by
t he Rawr bu. ..

5.5.4. See Also

e Section 3.2"
e Section 5.10"
e Rawr website, http://qitorious.org/projects/rawr

5.6. Packaging JRuby Web Start Applications
5.6.1. Problem

You want to package your JRuby program as a Java Web Start
application.

5.6.2. Solution

Install the Rawr gem. See Section 5.5 for instructions on how to use and
configure the gem. Because of the Web Start security model and JRuby's
use of the VM, the main JAR file and the JRuby runtime JAR file must be
signed to run in the Web Start security sandbox. Start by generating a
keystore file named myKeystore with the alias nysel f . Enter a password
and other information when prompted:

$ keytool -genkey -keystore nyKeystore -alias nyself
Ent er keystore password: dunmbpassword
What is your first and | ast nane?
[Unknown]: Henry Liu
What is the nanme of your organizational unit?
[Unknown]: G obal Digital
What is the nane of your organization?
[Unknown] : MTV Net wor ks
What is the nane of your City or Locality?
[Unknown] : New Yor k
What is the name of your State or Province?

[Unknown] : NY

What is the two-letter country code for this unit?
[Unknown] : US
Is CN=Henry Liu, Ok&d obal Digital, O=MIV Networks, L=New York,
ST=NY, C=US
correct?
[no]: vyes
Ent er key password for <nysel f>

(RETURN i f sane as keystore password):

Using your newly created keystore, create a self-signed certificate with
the sel f cert option:

$ keytool -selfcert -alias myself -keystore nyKeystore

Edit the build_configuration.yaml file and create a hash

named web_st art containing the key sel f _si gn with the value true and
a sel f _si gn_passphr ase key whose value is set to the certificate's
password. Create a hash named j nl p with the required values

for codebase, descri pti on, vendor, and honepage_hr ef . Example 5-

7 shows how to define YAML hashes in your configuration file.

Example 5-7. Web Start parameters in Rawr configuration file

web _start: { self_sign: true, self_sign _passphrase: password }

jnlp: {

codebase:

http://1 ocal host : 8080,

description:

My Webstart Deno,

Nane,
http://ww. ora.com

vendor: Your
honmepage_href:

}

Sign the JRuby runtime JAR file and other included JAR files that access
the native system, use network services, or produce security errors:

$ jarsigner —keystore nyKeystore —storepass password
lib/javal/jruby-conplete.jar

Run the raw : bundl e: web Rake task to generate your Web Start
application:

$ jruby -S rake raw: bundl e: web

The application is found in the package/native_deploy/web directory.
Move all the files to your web server's distribution folder and launch the
web start application by opening JNLP file in your browser. For example, if
your web server was running on | ocal host using port 8080, you would
use the URL http://localhost:8080/jruby_cookbook.jnlp.

5.6.3. Discussion

You can use the fil e:// URL prefix with the javaws tool to test your Web
Start without having to use to the web server or browser. Set

the codebase value to the deployment directory in
yourbuild_configuration.yaml file, as seen here, and rebuild

your application:

codebase: file:///C. /raw deno/ package/ nati ve_depl oy/ web

Launch your Web Start application with the javaws command:

$ javaws package\nati ve_depl oy\ web\jruby_cookbook. jnlp

Remember to change the codebase value to a web address when you
deploy your application.

5.6.4. See Also

e Section 5.5"

5.7. Creating JRuby Applets
5.7.1. Problem

You want to create a Java applet using JRuby.

5.7.2. Solution

Working with an applet in JRuby is slightly different from creating a
desktop application because the Ruby code cannot instantiate its own
main application window but must add components to the parent applet's
content pane. One possible solution, shown in Example 5-8, is to expose
the content pane as a global variable to the JRuby runtime.

Example 5-8. JRuby applet with content pane in a global
variable

JRubyAppl et . j ava
package org.|jrubycookbook;

i mport java.util.Arrayli st;

i mport org.jruby. Ruby;

i mport org.jruby.javasupport.*;

i mport java.awt . Cont ai ner;

inport org.jruby.runtinme.builtin.|RubyQbject;
i mport org.jruby.runtine.*;

public class JrubyAppl et extends javax.sw ng. JAppl et {
public void init(){
Ruby runtime = JavaEnbedUtils.initialize(new
ArraylList<String>());
runtime.eval Scriptlet("require \"java\"\ncl ass
FreshFor Java\ nend\ n") ;
final | RubyQbject blankRuby =
runtinme. eval Scri ptl et ("FreshForJava. new');
| RubyCbj ect gl obVal ue =
JavaUtil.convertJavaToRuby(runti ne,
t hi s. get Cont ent Pane());
gl obVal ue = Java.java_to_ruby(bl ankRuby, gl obVal ue,
Bl ock. NULL_BLOCK) ;
d obal Vari abl e gv = new d obal Vari abl e(runti ne,
"$cont ent _pane",
gl obVval ue);
runti ne. defi neVari abl e(gv);
String bootRuby = "require 'appletnmain' \n";
runtime. eval Scriptlet(bootRuby);

}

appletmain.rb
i ncl ude Java

i nport javax.sw ng. JPane
i mport javax.sw ng. JButton

ip = JPanel . new

but = JButton. new " CK")

but.add_action_Ilistener do |evt|
puts "pressed"

end

j p- add(but)

$cont ent _pane. add(j p)

Package the Ruby scripts with your Java classes into a JAR file and then
reference that JAR file from inside an HTML appl et tag. Include

the jruby-complete.jar with the JRuby runtime along with your application
JAR file through the ar chi ve parameter. Example 5-9 shows a

sample appl et tag to be used in an HTML page.

Example 5-9. Applet tag for a JRuby applet

<appl et wi dt h="200" hei ght="200" align="baseline"
code="org. j rubycookbook. JrubyAppl et. cl ass"
codebase="."
pl ugi nspage="http://java.sun.com j2se/ 1. 6. 0/ downl oad. ht mi "
archi ve="jrubyappl et.jar,jruby-conplete.jar">
</ appl et >

Java 6 update 10 introduced a new method of embedding an applet
through a JavaScript call. This technique is shown in Example 5-10.

Example 5-10. JavaScript applet deployment

<script src="http://java.com js/deployJava.js"></script>
<scri pt>
depl oyJava. runAppl et ({ codebase: "",
archive: "jruby-conplete.jar,jrubyapplet.jar",
code: "org.jruby. JRubyAppl et. cl ass",
wi dt h: 320", Height:"400"}, null, "1.6");
</script>

5.7.3. Discussion

An alternate approach, shown in Example 5-11, is for the

Swing Panel object to be created and returned from the JRuby script
execution. The appearance and behavior of the user interface is defined
by the MyPanel class found in the appletmainclass.rb file.

Example 5-11. JRuby applet, alternate implementation

JRubyAppl et . j ava

public class JrubyAppl et extends javax.sw ng. JAppl et {
public void init() {

Ruby runtine =
JavaEnbedUils.initialize(Collections.entpyList());

String bootRuby = "require 'appl etmainclass' \n
MyPanel . new \ n";

| RubyCbj ect ro = runtinme. eval Scri ptl et (boot Ruby);

Cont ai ner panel = (Contai ner)JavaEnbedUtils.rubyToJava
(runtime, ro, Container.class);

t hi s. get Cont ent Pane() . add(panel);

this.setSize(100, 100);

}

appl et mai ncl ass.rb
i ncl ude Java

cl ass MyPanel < javax.sw ng.JPanel
i ncl ude_package 'j avax. swi ng'

def initialize
super
but = JButton. new("OK")
but.add_action_|istener do |evt|

puts "pressed too"

end
add(but)

end

end

The code becomes a bit simpler in a Java 6 or later environment with
JSR-223 support. The Java-to-JRuby object delegation code is eliminated
in Example 5-12, improving the readability of the code.

Example 5-12. JRuby applet using Java Scripting

package org.jrubycookbook;

i nport javax.script. ScriptEngine;

i nport javax.script.ScriptEngi neManager ;
i mport javax.script.ScriptException;

i mport java.awt . Cont ai ner;

public class JrubyAppl et extends javax.sw ng. JAppl et {

public void init()({
Scri pt Engi ne runti nme = new
Scri pt Engi neManager () . get Engi neByNanme("j r uby");

String bootRuby = "require 'nmain' \n MyPanel.new \n";

try{
Container ¢ = (Container)runtine. eval (boot Ruby) ;
t hi s. get Cont ent Pane() . add(c);
this.setSize(100, 100);

} catch(ScriptException e) {
e.printStackTrace();}

Example 5-13 shows how to make the applet’'s content pane available as
a global variable through the JSR-223 API.

Example 5-13. Applet using Java Scripting and a global variable

public class JrubyAppl et extends javax.sw ng. JAppl et {

public void init()({
Scri pt Engi ne runti me = new
Scri pt Engi neManager () . get Engi neByNanme("j r uby");
runti me. put ("content _pane",this. getContentPane());
String bootRuby = "require 'nainpassed \n";
try{
runti me. eval (boot Ruby) ;
} catch(ScriptException e) {
e.printStackTrace();
}

5.7.4. See Also

e Section 3.4"

5.8. Manipulating Images
5.8.1. Problem

You want to resize or otherwise modify an image using JRuby.

5.8.2. Solution

Use a JRuby-compatible image library such as RMagick4J or ImageVoodoo
for simple tasks like thumbnail generation. The Java 2D API can be used
when you need more advanced image-processing capabilities.

5.8.2.1. RMagick4]

RMagick is a gem frequently used by Ruby developers for thumbnail
generation or image editing but it requires the C-based ImageMagick
libraries. RMagick4J was created so JRuby developers could work with the
familiar APl and allow their existing application to remain compatible
RMagic applications. Start by installing the RMagick4J gem:

$ jruby -S geminstall rmagick4j

Example 5-14 demonstrates a simple thumbnail-creation operation. It
also shows how to make the library compatible with the RMagick gem by
using a small amount of platform-detection code to load the correct gem
before including the appropriate gem.

Example 5-14. Creating thumbnails with RMagick4J

require 'rubygens'

gem defi ned?(JRUBY_VERSION) ? 'rnagick4j' : 'rmagick'
require ' RMVagi ck'

i ncl ude Magi ck

img = | mage. new "avatar.j pg"
thunmb = ing.resize(0.25)
thumb.write "avatar-thunb.jpg"

RMagick4J has implemented most, but not all, of the functions from the
original RMagick gem. The team has stated though they have a goal to
provide complete compatibility with the C-based RMagick gem in the
future.

5.8.2.2. ImageVoodoo

ImageVoodoo was created by JRuby core team members Tom Enebo and
Nick Sieger. Its original purpose was to be an APl-compatible JRuby
implementation of Ryan Davis's ImageScience library, another widely
used Ruby library for image processing. Begin by installing the
ImageVoodoo gem:

$ jruby -S geminstall inmage_voodoo

Example 5-15 shows how to create a thumbnail image using the library.

Example 5-15. Creating thumbnails with ImageVoodoo

require 'imge_voodoo'

| mageVoodoo. wit h_i mage(' | ogo-240-480.jpg') do |ing|
i ng. t hunbnai |l (240) do |i ny|
i mg. save "l ogo- 120- 240. j pg"
end
end

The ImageVoodoo gem includes the image_science.rb file to provide
compatibility with existing ImageScience code. If you open the file, you'll
see that | mageSci ence class simply references to

thel mageVoodoo class. Example 5-16 shows how we can replace our
ImageVoodoo references in Example 5-15 with the ImageScience-
equivalent code. By using the | nageSci ence class name, the code is
completely portable between a C-Ruby and JRuby interpreter.

Example 5-16. ImageScience example

require 'image_science'

| mageSci ence. wi th_i mage(' | ogo-240-480.jpg') do |ing|
i mg. t hunbnai |l (100) do |i ng|
i mg. save "l ogo-120-240-i magesci ence. j pg"
end
end

With each new version of the gem, the ImageVoodoo team has added
additional image-processing capabilities to the library such as color
conversion, brightness, and grayscale. Example 5-17uses the

new from ur|l method to load an image from the Web and then process

that image through a series of filters. The pr evi ew method in the
example opens the image in a window; this is a helpful tool for rapid
debugging or tweaking filter settings.

Example 5-17. ImageVoodoo extended features

require 'imge_voodoo'

| mgeVoodoo. fromurl ("http://ww. googl e.conmlintl/en_ALL/imges/|o
go.gif") do |ing|
i ng. adj ust _bri ghtness(1.4,30) do |ing3|
i mg3. greyscal e do | i nog4|
i ng4. negative do |ing5|
i ng5. previ ew
end
end
end
end

5.8.3. Discussion

Use the Java 2D API for low-level or custom image processing. The code
shown in Example 5-18 produces the highest quality thumbnail by
utilizing a common softening technique. The quality comes at the expense
of the CPU because of the additional necessary image processing.

Example 5-18. Java 2D API thumbnail generation

i ncl ude Java

i nport java.awt. | mage
i nport java.awt.i nmage. Buf f er edl mage
i mport java.awt.inage. Convol veOp

quality = 0.5
newW dth = 300
i = javax.sw ng. | magel con. new("sour ce-i mage. j pg").i mage

newng, i _w, i_h=mnil, i.width, i.height

if (i_w>i_h)

newl mg = i.get Scal edl nstance(newN dth, (newWNdth * i_h)/i _w,
| mage: : SCALE_SMOOTH)

el se

newl ng = i.getScal edl nstance((newNdth * i _h)/i_w, newWdth,
| mage: : SCALE_SMOOTH)

end

tnmp =(j avax. swi ng. | magel con. new(newl ng)) . i nage

Create a Bufferedlnmage for the filter.

buf f er edl mage = Bufferedl nage. new(t np. wi dt h,
t np. hei ght, Buf f er edl mage: : TYPE_| NT_RGB)

g = bufferedl mage. creat eG aphi cs()

g.color = java.awm . Color::white
g.fillRect (0, O, tnp.w dth, tnp.height)
g. drawi nage(tnp, 0, 0, nil)

g. di spose()

Apply softening filter.

soft Fact = 0.05

softArray = [0, softFact, 0, softFact, 1-(softFact*4), softFact,
0, softFact, 0]

kernel = java.awt.inage. Kernel.new3, 3,
softArray.to_java(:float))

op = Convol veQp. new(kernel, Convol veQp:: EDGE_NO CP, nil);

buf f eredl mage = op.filter(bufferedl nmage, nil)

Wite the file.

out = java.io. Fil eQutputStream new "output.jpg")

encoder =

com sun. i nage. codec. j peg. JPEGCodec: : cr eat eJPEGEncoder (out)
par am = encoder . get Def aul t JPEGEncodePar an{ buf f er edl mage)
param set Quality(quality, true)

encoder . set JPEGEncodePar am(par am

encoder . encode(buf f er edl nage)

puts "finished"

5.8.4. See Also

 ImageScience

website, http://seattlerb.rubyforge.org/ImageScience.html
e RMagick website, http://rmagick.rubyforge.org/
o RMagick4J website, http://code.google.com/p/rmagick4j/

5.9. Creating SWT Applications
5.9.1. Problem

You want to create SWT applications using JRuby. The Standard Widget
Toolkit (SWT) is probably the most popular Java client technology after
the AWT and Swing libraries. It is open source software and is best known
as the user interface framework used throughout the Eclipse IDE.

5.9.2. Solution

Download the SWT library and include the swt.jar in your classpath or use
the r equi r e method to load the JAR file from your Ruby application.
JRuby integrates nicely with

theorg. ecl i pse. swt. Shel | and org. ecli pse. swf.w dgets. D spl ay cla
sses and is able to access all the Ul widgets in the library. The code

in Example 5-19 demonstrates how to handle button events in an SWT
application.

Example 5-19. Simple JRuby SWT application

i ncl ude Java
require 'sw'

i nport org.eclipse.sw.SW
i mport org.eclipse.sw.|ayout.RowLayout
i mport org.eclipse.sw.w dgets. Li stener

d = org.eclipse.swt.w dgets. D splay. new

s = org.eclipse.swt.w dgets. Shel | . new(d)

but = org.eclipse.swt.w dgets.Button. new(s, SW:: PUSH)
but.text = "Search"

| = org.eclipse.swt.w dgets. Label . new(s, SWI: : NONE)

| .text = "Cick to Search"

I

.set _size(100, 75)

but . addLi st ener (SWI: : Sel ecti on, Listener.inpl do | method, evt]
| .text = "searching...'
end)

s.layout = RowLayout. new
s.set _si ze(300, 200)
S. open

while(!s.is_disposed) do d.sleep if(!d.read_and_di spatch) end
d. di spose

5.9.3. Discussion

The Glimmer project is a JRuby DSL for creating SWT applications using a
declarative syntax. It was created by Andy Maleh and is an official Eclipse

project. Install the Glimmer gem with this command:

$ jruby -S geminstall glimer

The gem provides a custom DSL for composing SWT applications. It has a

declarative style, using keywords and accompanying blocks to define
containers as well as individual components. The widget's models and
event handlers can be associated to Ruby methods for custom event
processing and state changes. You can see an example of the Glimmer
DSL in Example 5-20.

Example 5-20. Writing an SWT application with Glimmer

i ncl ude Java
require File.dirnanme(__FILE) + "/../src/sw"

i nclude G i mrer
i mport 'org.eclipse.swt.layout.GidLayout'

def user_nane
"default text"
end

def enabl ed
true
end

@hell = shell {
text "SW™
conposite {
| ayout GridLayout.new(2, false) #two colums with differing
wi dt hs
| abel { text "Hello World!"}
text {
text bind(self, :user_nane)
enabl ed bind(self, :enabled)

}
}

}
@hel | . open

5.9.4. See Also

Section 5.11"

Section 5.12"

SWT website, http://www.eclipse.org/swt/

Glimmer website, http://rubyforge.org/projects/glimmer/

5.10. Accessing the Native Desktop
5.10.1. Problem

You want to create or communicate with a native application.

5.10.2. Solution

You can access a limited set of commonly used features in the native
desktop through the j ava. awt . Deskt op class introduced in Java 6.

The Deskt op class does not provide access to the entire desktop, but does
allow you to perform common desktop activities such as opening the
default browser, launching the default mail client, as well as printing or
opening a file with its default application (Example 5-21).

Example 5-21. Java Desktop API

i ncl ude Java

i mport java.awt . Desktop
i mport java. net. UR
import java.io.File

d = Desktop: : desktop
Open the browser

#
d. browse(URI . newm("http://ww. ora.com ")) if
d. i sSupported(Desktop:: Acti on: : BROASE)

Open your mail client and conpose a nessage
d.mai |l (URI.nem("mailto:jruby@ra.cont)) if

d. i sSupported(Desktop::Action:: ML)

Launch the default jpg view ng application
d. open(Fil e. new("conference_pic_1.jpg")) if

d. i sSupport ed(Deskt op: : Acti on: : OPEN)

Print a document
.print(File.newm("directions.twxt")) if
. i sSupport ed(Deskt op:: Acti on:: PRI NT)

o o FH*

5.11. Accessing the System Tray
5.11.1. Problem

You want to use JRuby to create an application that runs in the Mac OS X,
Windows, or KDE system tray.

5.11.2. Solution

5.11.2.1. Swing

You can access the Windows or Linux system tray through the
Java j ava. am . Syst enilr ay class, added in Java 6, as in Example 5-22.

Example 5-22. A Java system tray application

i ncl ude Java

i nport java.awt. Trayl con
i nport java.awt.event. MouselLi st ener

if (java.aw . Systemlray::i sSupported())

tray = java.awt . Systeniflray: :systemtray
i mge =
java.awm . Tool kit::default _toolkit.get imge("tray.gif")

popup = java.aw . PopupMenu. new
exititem= java.awt. Menultem new("Exit")
exititem addActi onLi stener {java.lang. System:exit(0)}

oraitem = java.awt. Menultem new("Go To ORA")
orai tem addActi onLi stener do

j ava. awm . Deskt op: : deskt op. browse(j ava. net. URl . newm("http://ww. ora
.com'))
end

popup. add(exititen)

popup. add(oraitem

traylcon = Trayl con. newi nage, "Tray Denp", popup)
traylcon.inage_auto_size = true

trayl con. addActi onLi stener do |evt|
trayl con. di spl ayMessage(" Action","Tray Action!", \
Trayl con: : MessageType: : WARNI NG
end

trayl con. addMouseli st ener (MouselLi stener.inpl do | method, evt]
puts "nmouse event #{nethod.to_s}"
end

tray.add(trayl con)
end

511.2.2. SWT

The SWT library also includes a class for accessing the system

tray: org. ecl i pse. swt. w dgets. Tray (Example 5-23). This SWT widget
has the advantage of being available on the Windows, Linux, and Mac
platforms. The OS X implementation places an icon in the desktop's
status area.

Example 5-23. SWT system tray application

i ncl ude Java
require 'sw-debug'

i nport org.eclipse.sw.SW
i mport org.eclipse.sw.w dgets. Listener
i mport org.eclipse.swt.w dgets. Menultem

d org. eclipse.sw.w dgets. D spl ay. new

S org. eclipse.sw.w dgets. Shel | . new d)

i mge = org.eclipse.sw.graphics.|lmge.nem(d, "tray.gif")
tray = d.systemtray

item = org.eclipse.swt.w dgets. Trayltem new(tray, SW:: NONE)
itemtool tip_text = "SW Trayltent

i tem addLi st ener (SWI: : Def aul t Sel ecti on, Listener.inpl do |evt]
puts("default selection")
end)

menu = org. eclipse. swt.w dgets. Menu. new(s, SW:: POP_UP)
menui tem = Menul tem new(menu, SWI: : PUSH)
nenuitemtext = "Exit"

nmenui t em addLi st ener (SWI: : Sel ecti on, Listener.inpl do |nethod,
evt |

s.cl ose
end)

i tem addLi st ener (SWI: : MenuDet ect, Listener.inpl do | method, evt]
menu. vi si ble = true
end)

iteminmage = i mage

exclude these paraneters to hide the nmain w ndow

#s. set Bounds(10, 10, 100, 100)

#s. open()

while(!s.is_disposed) do d.sleep if(!d.read_and_di spatch) end
i mage. di spose

d. di spose

5.11.3. See Also

e Section 5.9"

5.12. Swing Development with JRuby
Domain-Specific Languages

5.12.1. Problem

The trend toward declarative GUI design can be seen in the growth of
web applications and the transition of established technologies to
declarative models such as Adobe Flex and JavaFX Script. You want to
use a JRuby-based DSL to develop your Swing applications.

5.12.2. Solution

There are a several different projects that present DSLs for creating
Swing user interfaces.

5.12.2.1. Swiby

The Swiby project is a JRuby adaptation of the declarative GUI building
portion of the JavaFX Script language. Install the Swiby gem:

$ jruby -S geminstall sw by

Swiby's syntax and design is inspired from JavaFX Script, in which blocks
are used to represent hierarchies of user interface containers and
components. Properties are defined by single-line name-value
declarations. The Swing and AWT class names are mapped to shorter,
more concise names used in the DSL. Swiby eliminates some of JavaFX
Script's capitalization when defining widgets and trailing colons after
property declarations. Example 5-24 shows Swiby in action.

Example 5-24. Simple Swiby application

require 'rubygens'
require 'sw by’
require 'sw by/form

cl ass Label Model
attr_accessor :text

end
nodel = Label Mbdel . new
nodel .text = "Click to Search"

f = frame {
title "Sw by Exanpl e"

wi dt h 300

hei ght 100

content {

panel :layout => :flow do
button("Search") { nodel.text="Searching...."}
| abel {l abel bind(nodel, :text)}

end

}

f.visible = true

The Swiby project has some features that aren't found in JavaFX Script,
like the ability to define your styles in an external file. The styles can be
loaded and applied with the simple use_st yl esdeclaration. Example 5-

25 shows how to alter the font by creating and loading a file

named styles.rb.

Example 5-25. Defining Swiby styles

swi byapp.rb

frame {
title "Sw by Exanpl e"
wi dt h 300
hei ght 74
use styles "styles.rb"

styles.rb

create_styles {
| abel (
cfont _famly => Styl es:: VERDANA,
.font_style => :italic,
:font_size => 14,
: col or => 0OxAA0000
)
}

The gem also provides a useful form-building DSL. This is geared toward
forms with simpler, grid-based layouts.

5.12.2.2. Cheri::Swing

The Cheri project is a framework that facilitates the creation of DSLs that
implement the Builder pattern to create a hierarchy of objects.
Cheri::Swing is one of these DSLs. Begin by installing the Cheri gem:

$ jruby -S geminstall cheri

Its declarative syntax is very similar to Swiby and also provides access to
Swing components as well as the AWT's image and geometry
packages. Example 5-26 presents a Cheri application.

Example 5-26. Simple Cheri::Swing application

require 'rubygens'
require 'cheri/sw ng'
i ncl ude Cheri:: Swi ng

SW ng[: aut o=>true]

f = frame(' Cheri App') { |nyfrane|
si ze 250, 100

fl ow_| ayout
on_wi ndow_cl osing {]event]| f.dispose}
button(' Search') {

on_click {@.set_text "Searching..."}
}
separ at or
@ = label("Cick to search')

f.visible = true

Setting the swi ng[: aut o=>t r ue] option allows you to eliminate
the swi ng prefix in the component
declaration: swi ng. frane becomes fr ane, etc.

5.12.2.3. Profligacy

The Profligacy library was created by Zed Shaw and takes a different
approach than Cheri and Swiby, as we'll see shortly. First, install the
Profligacy gem:

$ jruby -S geminstall profligacy

Profligacy provides a custom DSL that includes a variety of time-saving
syntactical improvements, as shown in Example 5-27.

Example 5-27. Profligacy search demo

require 'rubygens'
require 'profligacy/sw ng'

cl ass Sear chDenp
i ncl ude_package 'javax. swi ng'
i ncl ude_package 'java. awt'
i ncl ude Profligacy

def initialize
@i = Swing::Build.new JFranme, :search, :lab do |c,i|
c.search = JButton. new "Search"
c.lab = JLabel .new "dick to Search"
i.search = { :action => proc {|t,e| c.lab.text =
"Searching..." } }
end

@i . | ayout = Fl owLayout. new
@i . bui I d("Layout").default_cl ose_operation =
JFrame: : EXI T_ON_CLCSE
end
end

SwingUtilities.invoke_|ater |anbda { SearchDenp. new }

Profligacy uses a custom layout language named LEL where you create
something that resembles ASCII art to create a layout with named
component spaces (Example 5-28).

Example 5-28. Profligacy LEL demo

require 'rubygens'
require 'profligacy/sw ng'
require 'profligacy/lel’

cl ass Lel SearchTest
i ncl ude_package 'j avax. swi ng'
i ncl ude Profligacy

[ayout ="
[search | _]
[_ | I ab]

ui = Swi ng::LEL. new(JFrane,layout) do |c,i|
c.search = JButton. new " Search"
c.lab = JLabel .new "Click To Search"
i.search= { :action => proc {|t,e| c.lab.text =

"Searching..." } }

end

ui . build(:args => "LEL Search Exanple")
end

The brackets represent individual rows and the pipes character is a
column delimiter. Figure 5-1 shows the output after executing Example 5-
28.

Figure 5-1. LEL Search Demo user interface

Click To Search

5.12.3. See Also

e Cheri website, http://cheri.rubyforge.org/
e Swiby website, http://swiby.codehaus.org/
o Profligacy website, http://ihate.rubyforge.org/profligacy/

5.13. Using the Monkeybars Framework for
Swing Development

5.13.1. Problem

You want to develop a Swing application while following the model-view-
controller (MVC) pattern.

5.13.2. Solution

Use Monkeybars, a library created by David Koontz, the author of Rawr. It
uses the MVC design pattern, similar to web frameworks like Rails or
Struts, to create JRuby client applications. Start by installing the
Monkeybars gem:

$ jruby -S geminstall nonkeybars

The gem will add the Monkeybars tool to your JRuby execution path. This
is similar to the rails command used by Ruby on Rails developers.
Running monkeybars creates the main project folder and the project
skeleton:

$ jruby -S nonkeybars search_deno

Example 5-29 includes a Java class that we will use with Monkeybars.
This class extends JFr ane and contains a button with some accompanying
text. The file should be located in the src.

Example 5-29. Java GUI class for use with Monkeybars

i mport javax.sw ng. *;

public class SearchDenpoJava extends JFranme {
private JLabel nessage = new JLabel ("Cick to search");
private JButton search = new JButton("Search");
publ i c SearchDenpJava() {
thi s. setLayout (new java. awt . Fl owLayout ());
this.setSize(300, 100);
add(search);
add(nessage) ;

The event-handling code and model data is defined in Ruby code.

The gener at e Rake task, which was added along with the Monkeybars
JAR file and several Ruby classes when the project was generated, is used
to create the new model, view, and controller classes. Use

the ALL parameter to create all these at once:

$ cd search_deno

$ jruby -S rake generate ALL="src/search"

(in C:/projects/search_deno)

Cenerating controller SearchController in file
search _controller.rb

Cenerating nodel SearchMbdel in file search_nodel.rb
Cenerating view SearchViewin file search_view.rb

The model class uses an instance variable to store messages that are
displayed in the text label (Example 5-30). The variable is later mapped
to a GUI component in the complementing view file.

Example 5-30. Monkeybars model file

cl ass Sear chibdel
attr_accessor :search_nessage
def initialize
@earch_nessage = "Starting"
end
end

Open the search_view.rb file and assign the Sear chDenpJava class as
your view's display component by calling the set _j ava_cl ass method.
Use the map method to bind the model's instance variable to the text
property of the label so that modifications to the model class will be
reflected in the view component. The modified view class can be seen
in Example 5-31.

Example 5-31. Monkeybars view class

cl ass SearchView < ApplicationVi ew

set _java_cl ass ' SearchDenpJava'

map : nodel => :search_nessage, :view => "nessage.text"
end

The controller class is responsible for defining the view and model
objects, event-handling, and managing the state of the application.

Open search_controller.rb and you will see that the generator has already
defined the view and model classes. It is still necessary to add the event-

handling function for the search button. The search controller intercepts
events from the view and directs them to a function that incorporates the
instance variable name of the source, sear ch, and the lowercase form of
the event's Java type, acti on_perfornmed. This is another inspiration from
Rails and convention over configuration design. Example 5-32 shows the
modified controller class.

Example 5-32. Monkeybars controller class

cl ass SearchController < ApplicationController
set _nodel ' SearchModel
set _view ' SearchVi ew
set _close action :exit

def search_action_perforned
nodel . search_nessage = "Searching..."
updat e_vi ew
end
end

Note that the new text value is set in Ruby model and not in the Java
component. The updat e_vi ew method redraws the GUI components,
which then reevaluate the view mapping and display the new message.

Install the Rawr gem and run the raw install command in your
project's root directory. Edit the sr¢/main.rb file and add a hook into your
application by creating an instance of the controller class (Example 5-33).

Example 5-33. Monkeybars main execution file

begi n
Your app logic here, i.e. YourController.instance.open
require 'search_deno/search_controller'
SearchControl | er.instance. open
rescue Exception => e

Download or build a copy of jruby-complete.jar and place the file in
the lib/java directory. Bundle the application as an executable JAR by
calling the rawr : j ar Rake task from the project's root directory:

$ jruby -S rake raw:jar

By default, this produces a JAR file in the package/deploy directory. You
can modify the name of the final JAR file by editing

Rawr's build_configiruation.yaml file. Test the new application by running
the JAR:

$ java —j ar package/ depl oy/ change_ne.j ar

5.13.3. Discussion

Example 5-31 showed the use of a Ul component defined in Java, but you
may want to use JRuby or a framework to generate the user interface.
The class defined in Example 5-34 is fundamentally the same as that
from Example 5-29.

Example 5-34. Ul component defined in JRuby

i ncl ude Java

cl ass SearchDenmbRuby < javax.swi ng. JFramne

attr_accessor :search, :nessage

def initialize
super
sel f. | ayout ava. awt . Fl owLayout . new
add(@Gearch avax. swi ng. JButton. new"search"))
add(@essage = javax.sw ng.JLabel .nem("Cick to Search"))
sel f.set_size(300, 100)

end

J
j

end

This example really demonstrates how the loose coupling between the
components makes the view layer easily interchangeable. The view file is
the only file in the MVC portion of the app that will need to be modified.
Monkeybars support for Ruby-defined components is a little less elegant
than the Java support but is expected to improve in the future. Remove
the old set _j ava_cl assdeclaration and assign a new instance of the
Ruby GUI class to the @mi n_vi ew_conponent variable. This is shown

in Example 5-35. Be sure to call the parent's constructor when overriding
the view's default constructor.

Example 5-35. Monkeybars view class that uses a JRuby Ul
component

cl ass SearchView < ApplicationVi ew
set _java_cl ass "SearchDenpJava"
def initialize
super
@rai n_vi ew_conponent = Sear chDeno. new
end
def search
@rai n_vi ew_conponent . sear ch
end
def message
@rai n_vi ew_conponent . nessage
end
map : nodel => :search_nessage, :view => "nessage.text"
end

In addition, you need to edit the main.rb file in order to have it load the
JRuby GUI class:

begi n
Your app logic here, i.e. YourController.instance.open
require 'search_deno_ruby'
require 'search_deno/search_controller’
SearchControl |l er.instance. open
rescue Exception => e

Once this is in place, you can generate a new executable JAR file with
Rawr and test your application.

5.13.4. See Also

e Monkeybars home page, http://monkeybars.rubyforge.org/
e Section 5.5"

5.14. Creating Qt Applications with JRuby
5.14.1. Problem

You would like to use JRuby to build applications using the Qt GUI
framework. Qt is a popular cross-platform application framework for
creating user interfaces. It has a rich set of components such as the Web
Browser and System Tray widgets.

5.14.2. Solution

The Qt Jambi project lets developers leverage the Qt framework through
Java. Qt Jambi is available for download

from http://trolltech.com/downloads/. Download the platform-

specific bundle and add the files gtjambi-version.jar and gqtjambi-
platform-version.jar to your classpath.

Qt::JRuby is a library that brings several nice integration features when
working directly with the Qt Jambi library from JRuby including a DSL for
Qt. To use Qt::JRuby, you need to build the library from source. First, get
the latest version of Qt::JRuby from its Git repository. Then, use Rake to
build gqtjruby-core.jar and install the wrapper RubyGem:

$ git clone git://github.com nmerouze/qtjruby.git

Initialize qtjruby/.git

Initialized enpty Gt repository in /home/ henry/qtjruby/.git/
remote: Counting objects: 391, done.

renote: Conpressing objects: 100% (182/182), done.

Recei vi ng objects: 100% (391/391), 59.30 KiB | 78 Ki B/s, done.
Resol ving deltas: 100% (180/180), done.

$ cd qtjruby/qtjruby-core

$ jruby -S rake

(in /hone/ henry/ qtjruby/qtjruby-core)

ant -lib /opt/jruby-1.1.2/bin/../lib

Buildfile: build.xm

gtjruby-core:
[javac] Conpiling 14 source files to
C:\ hone\ devel \ qtj ruby\ qtjruby-core\build
[javac] Note: Sone input files use unchecked or unsafe
oper ati ons.
[javac] Note: Reconpile with -Xint:unchecked for details.
[jar] Building jar: C:\honme\devel\qtjruby\qtjruby-
core\lib\gtjruby-core.ja
r

BUI LD SUCCESSFUL
Total tine: 1 second
WARNI NG no rubyforge_project specified
WARNI NG RDoc will not be generated (has_rdoc == fal se)
Successfully built RubyGem
Nare: qtjruby-core
Version: 0.2.0
File: qtjruby-core-0.2.0.gem
fopt/jruby-1.1.2/bin/../bin/jruby -S geminstall pkg/qtjruby-
core-0.2.0.gem
Successfully installed qgtjruby-core-0.2.0
1 geminstalled

The Qt::JRuby library includes a Ruby module named @ that allows you
to reference the Qt Jambi classes without a package name or the Q prefix.
For example, the classcom trol |t ech. qt. gui . QPushBut t on can simply
be referred to as ¢ : : PushBut t on. This is an admittedly small detail, but
one that makes code clearer and more readable. The library also maps Qt
signals into blocks, similar to a technique used with JRuby Swing event
handlers. Example 5-36 contains a basic Qt::JRuby application.

Example 5-36. Qt::JRuby application

Q::Application.initialize(ARGY)

wi ndow = Q::Wdget. new

wi ndow. r esi ze(300, 200)

| = Q::HBoxLayout. new

wi ndow. wi ndow title = "'QIJRuby Exanpl e’
wi ndow. | ayout = |

quit = Q::PushButton. new("Search", w ndow)
quit.font = Q::Font.new"Times", 14,
Q :: Font:: Weight::Bol d.val ue)

searchlab = Q::Label.nem("dick to Search", w ndow)
quit.clicked { searchlab.text = "Searching..." }

| . add_wi dget quit
| . add_wi dget searchl ab

wi ndow. show
Q :: Application. exec

Start the application with this command:

$ jruby -S gqtjruby qt_search_deno.rb

5.14.3. Discussion

You can also avoid the call to gt r uby by including its contents, a
reference to the qtjruby-core.jar file and gem-loading logic, in your
application. This may be useful when packaging your code as a
redistributable application:

require 'qtjruby-core'

gem path = @::JRuby.root / 'gens'
if File.exist? gempath

Gem cl ear _pat hs

Gem pat h. unshi ft (gem pat h)
end

Q::Application.initialize(ARGY)

wi ndow = Q::Wdget. new

This example can now be run directly:

$ jruby qt_search _deno.rb

There is a DSL for Qt JRuby currently under development. It's pretty
experimental and the APl may change with the early releases. Start by
building and installing the qtj ruby-dsl gem:

$ cd qtjruby/qgtjruby-dsl
$ jruby -S rake

The browser widget example that is distributed with Qt::JRuby nicely
demonstrates the capabilities of the DSL (Example 5-37). Again, the
component names are shortened and blocks are used to represent
container relationships and service events.

Example 5-37. Qt::JRuby experimental DSL

require 'rubygens'
require 'qtjruby-dsl’

Q. app do
wi ndow :id => "main" do
create :browser _wn, :type => :browser

create :le _address, :type => :line_edit
hbox do
| e_address

button(' Go').clicked do
browser _wi n.load | e address.text
end
end

browser _wi n.load 'http://ww. ora. coni
end
end

5.14.4. See Also

e Qt Jambi
website, http://trolltech.com/products/gt/features/language-
support/java

e Qt::JRuby blog, http://gtjruby.org/blog

o Git website, http://qit.or.cz/

Chapter 6. Build Tools

Introduction

Adding Ruby Scripting to Ant Builds
Using Ruby in Ant Conditions
Writing an Ant Task in Ruby
Adding Ruby Scripting to Maven Builds
Writing a Maven Plugin with JRuby
Building Java Projects with Raven
Referencing Libraries with Raven
Hosting a Private Raven Repository
Running JUnit Tests with Raven
Building Java Projects with Buildr
Referencing Libraries with Buildr
Building with Rake Inside Hudson

Adding Ruby Script to a Hudson Job

6.1. Introduction

Just about every software project, regardless of language or scope, needs
to be built in some way. The build process can include steps including
compiling code, running automated tests, file processing, packaging, and
deployment, among others. Because there is significant commonality
among build processes, a variety of specialized build systems are
available. These systems allow you to describe your build process as a
series of interdependent, reusable tasks. Ant, for example, allows you to

replace this:

$ javac *.java
$ jar —cf ny.jar *.class

With this:

$ ant jar

Or even (if j ar is the default target):

$ ant

This chapter discusses techniques for building Java-based projects. In this
context, Ruby can be used as the core of the build process or to enhance
an existing build process. There are two major build systems used for
Java projects: Ant and Maven. Both of these are projects of the Apache
Software Foundation and both have extension mechanisms that support
JRuby. This is the focus of the first few recipes. The later recipes describe
two different Ruby-based build systems designed for Java projects: Raven
and Buildr. All four of these build systems have merit: which to use for a
particular project is largely a matter of preference. Raven and Buildr are
significantly newer than Ant and Maven and, as a result, the communities
around them are smaller.

The chapter ends with two recipes about the Hudson continuous
integration server. The first of these addresses how to build Ruby projects

that use the Rake build system. The second looks at using Ruby to add
additional scripting to your build process inside Hudson.

6.2. Adding Ruby Scripting to Ant Builds
6.2.1. Problem

You are using Apache Ant as a build system and need to add some logic
to your build that isn't easily accomplished with Ant's XML syntax.

6.2.2. Solution

Add the appropriate JRuby dependencies to Ant's lib directory and use
the scri pt task to include Ruby code inside your Ant build file. Example
6-1 shows a very simple usage of this task.

Example 6-1. Hello World from JRuby inside Ant

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect name="project" default="package">
<t arget nane="sinple">
<scri pt |anguage="ruby">
print "Hello Wrld!"
</script>
</target>
</ proj ect >

6.2.3. Discussion

This task can use either the Bean Scripting Framework (BSF) or the Java
Scripting (JSR 223) libraries discussed in Chapter 3 and, as a result,
supports many more scripting languages than just Ruby. To use this task,
you must make the appropriate dependencies available to Ant. For BSF,
these dependencies are jruby.jar and bsf.jar, both included in the JRuby
distribution’s lib directory. For Java Scripting, you need the jruby.jar file
from the JRuby distribution and jruby-engine.jar, available

from https://scripting.dev.java.net/. Section 3.3 and Section 3.4 contain
more information about these APIs. As mentioned in the Solution above,
these JAR files can be placed in Ant's lib directory. Alternatively, the
dependencies can be declared inside the Ant build file as seen in Example
6-2. This latter method requires slightly more configuration, as you need
to set up the appropriate Ant properties—

j ruby. honme and j sr 223. engi nes. hone in the case of Example 6-2. In
this example, those properties are defined in a build.properties file in the
user's home directory.

Example 6-2. Defining JRuby dependencies inside the Ant file

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect nanme="project" default="package">

<property file="${user.hone}/build. properties" />
<pat h id="jruby">
<fileset file="${jruby. home}/lib/jruby.jar" />
<fileset file="$%${jsr223. engines. hone}/lib/jruby-
engine.jar" />
</ pat h>

<t arget nane="sinple">
<script | anguage="ruby" classpathref="jruby">
print "Hello #{$project.getProperty('user.nane')}"
</script>
</target>
</ proj ect >

Example 6-2 also shows that the Ant project object is available to Ruby
code as a global variable named $pr oj ect . In addition to the project, all
Ant properties, references, and targets are also available. However, it is
frequently the case, as in Example 6-2, that the Ant property name
contains the period character. In these cases, you need to use

the get Property() method to retrieve the values of these properties. If
the user's name was available through an Ant property

named user _nane, we could instead have written:

print "Hello #{3$user_nane}"

Ant targets can be executed by calling their execute method. Example 6-
3 shows the usage of Ruby code inside Ant in order to express a complex
conditional. In this example, we want some additional deployment step to
be performed only when the build is run in a Continuous Integration (CI)
environment and when the CI server used is Hudson. These indicators are
passed into the Ant build using properties, which are then used by the
Ruby script.

Example 6-3. Calling an Ant target from Ruby

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect name="project" default="package">

<property name="src.dir" value="${basedir}/src" />
<property nane="out put.dir" val ue="${basedir}/bin" />
<property nane="depl oy.dir" val ue="${basedir}/depl oy" />
<property name="output.file"

val ue="${out put. dir}/ package. zi p" />

<target name="init">
<nkdir dir="${output.dir}" />
<nmkdir dir="%{deploy.dir}" />
</target>

<t ar get nane="package" depends="init">
<zip destfile="${output.file}">
<fileset dir="${src.dir}" />

</ zi p>
<scri pt | anguage="ruby" classpathref="jruby">
<! [CDATA[
if ($cibuild == "true") && ($ciserver == "Hudson")
t hen
$depl oy. execut e()
end
11>
</script>
</target>

<t ar get nane="depl oy">

<echo>Depl oying file ${output.file}</echo>

<copy file="%{output.file}" todir="%${deploy.dir}"/>
</target>

</ proj ect >

Your Ruby code can access other scripts or libraries. For example, the
deployment step in Example 6-3 could be done directly from Ruby code
using the Fi | eUti | s module from the Ruby Standard Library:

<! [CDATA
require 'fileutils'
if ($cibuild !'= true) && ($ciserver == 'Hudson') then

puts "Deploying file
#{ $project.getProperty('output.file')}..."
FileUtils.cp $project.getProperty("output.file"),
$proj ect. get Property("deploy.dir")
end

11>

For this to work, you have to set the j r uby. hone system properties. This
can be done with the ANT_OPTS environment variable. On Windows, you
would run:

set ANT_OPTS=-Dj r uby. horme=" % RUBY_HOVEY%

On Linux or Mac OS X, you would use:

export ANT_OPTS=- Dj r uby. hone="$JRUBY_HOVE"

One final option to note is that you are not limited to including your Ruby
script inline inside the scri pt task. The task supports an sr c attribute
that can contain the path to a script to be executed. Using an inline script
versus an external file is largely a matter of length—once you are
including more than 10 lines of code inline, it's probably a good idea to
extract the code into an external file. External script files can also be
useful if you need to reuse the same block of code in multiple Ant build
files.

6.3. Using Ruby in Ant Conditions
6.3.1. Problem

Your Ant build has some conditional execution that is best expressed with
Ruby code.

6.3.2. Solution

Set up the Ant classpath as described in Section 6.2 and use

the scri pt condi ti on Ant condition element. This element is set up
similar to the script task described in Section 6.2. The key distinction is
that conditions are evaluated to produce a Boolean result. Typically, the
condition has a default value and the content of the condition would
override this as necessary. For example, the Ant fragment in Example 6-
4 will set a property named user _has_text _files totrue if the user has
any text files in their home directory.

Example 6-4. Using scriptcondition

<t arget nane="setup">
<condition property="user_has text files">
<scriptcondition |anguage="ruby" val ue="fal se">
cwd = Dir. pwd
Dir.chdir $project.getProperty("user.home")
$sel f.setValue(true) if Dir.glob("**/*.txt")
Dir.chdir cwd
</scriptcondition>
</condition>
</target>

In Example 6-4, the default result of the condition is f al se. This result is
overridden to t r ue by using the $sel f variable, which represents the
condition object itself. As with the script task discussed in Section 6.2,
the $proj ect variable is set to the Ant Pr oj ect object and all Ant
properties are available as variables in the Ruby script.

6.3.3. Discussion

Ant conditions can be combined with and, or, not, and xor condition
elements. Example 6-5 shows the combination of the condition

from Example 6-4 with one of Ant's built-in conditions, os. In this
example, we ensure that the user _has_text _fil es property is only set
on Windows systems.

Example 6-5. Combining scriptcondition with other Ant
conditions

<t arget nane="setup">
<condi tion property="user_has_text files">
<and>
<os fam | y="w ndows"/>
<scriptcondition | anguage="ruby" val ue="fal se">
puts "hell o"
cwd = Dir. pwd
Dir.chdir $project.getProperty("user.home")
$sel f.setValue(true) if Dir.glob("**/*.txt")
Dir.chdir cwd
</scriptcondition>
</ and>
</condition>
</target>

Ant exhibits "short-circuiting" behavior in that the second (and third and
fourth, etc.) conditions are only evaluated if necessary. For example, if
the fragment in Example 6-5 was executed on a non-Windows system,
the Ruby code would not actually be executed as the first condition (<os
fam | y=wi ndows"/ >) evaluated to f al se. This can be a useful thing to
keep in mind, as some conditions take longer to evaluate than others.

6.4. Writing an Ant Task in Ruby
6.4.1. Problem

You want to execute a Ruby script in multiple Ant build files.

6.4.2. Solution

Use Ant's scri pt def task to create a new task definition that executes a
Ruby script. The scri pt def task has a child element named attri but e,
which can be used to pass attributes into the task. Example 6-6 defines
an Ant task named st art - webri ck that can be used to start up an
instance of the WEBrick HTTP server given a specific port number and
document root.

Example 6-6. Using scriptdef to define a new Ant task

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect nanme="project" default="start">

<scri ptdef nanme="start-webrick" |anguage="ruby">
<attribute name="port"/>
<attribute nanme="root"/>
<! [CDATA[
require 'webrick’
i ncl ude WVEBri ck

server = HITPServer.new : Port =>
$attributes.get('port').to_i)
server.mount ("/", HTTPServlet::FileHandl er,
$attributes.get('root'))
server.start
11>

</ scri ptdef >
<target nanme="start">

<start-webrick port="8000" root="%{basedir}/files"/>
</target>

</ proj ect >

6.5. Adding Ruby Scripting to Maven Builds

6.5.1. Problem

You are using Apache Maven as a build system and need to quickly add
some additional steps to your build process.

6.5.2. Solution

Configure the JRuby Maven plugin in your Maven project definition

file, pom.xml. Example 6-7 shows the use of this plugin. In this example,
the plugin's r un goal, which executes a Ruby script, is bound to

the process-resour ces phase. This means that the inline Ruby script will
be run before any compilation or tests occur.

Example 6-7. Using the JRuby Maven plugin

<pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>org. j rubycookbook</ gr oupl d>
<artifactld>maven-sanpl e</artifactld>
<packagi ng>ponx/ packagi ng>
<ver si on>1. 0- SNAPSHOT</ ver si on>

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>jruby-mven-plugin</artifactld>
<executi ons>
<execution>
<phase>gener at e-r esour ces</ phase>
<goal s>
<goal >run</ goal >
</ goal s>
<configuration>
<r uby>
require "fileutils’
FileUils.touch
"target/timestanp
</ ruby>
</ configuration>
</ execution>
</ executi ons>
<I —These are necessary due to an issue wth
JRuby's Maven distribution. -->
<dependenci es>
<dependency>
<gr oupl d>backport-util -
concurrent </ groupl d>
<artifactld>backport-util-
concurrent</artifactld>
<ver si on>3. 0</ ver si on>
</ dependency>
<dependency>
<groupl d>asnx/ gr oupl d>
<artifactld>asmall </artifactld>
<version>2. 2. 3</ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ buil d>
</ proj ect >

6.5.3. Discussion

It's also possible to execute a script from a file by using
the scri pt configuration element instead of r uby:

<configuration>
<script>src/ min/scripts/touch_tinmestanp.rb</script>
</ configuration>

As with Ant's JRuby support, this plugin uses the j r uby. honme system
property to set up the Ruby load path. And just as Ant supports

an ANT_OPTS environment variable to pass system properties, Maven
supports an environment variable named MAVEN_OPTS. On Windows, you
would run:

set MAVEN OPTS=- Dj r uby. hone=" 9% RUBY_HOVE%

On Linux or Mac OS X, you would use:

export MAVEN OPTS=- D r uby. hone="$JRUBY_HOVE"

The default load path for scripts executed inside the Maven plugin will be
these paths, relative to the j r uby. hone system property:

l'ib/ruby/site ruby/1.8
i b/ ruby/site_ruby
l'ib/ruby/1.8
l'ib/ruby/1.8/java

It is possible to add additional entries to this list using
the | i br ar yPat hs configuration element:

<configuration>
<script>src/main/scripts/touch_tinestanp.rb</script>
<l'i braryPat hs>
<li braryPat h>${user. hone}/ruby/ i b</1i braryPat h>
</li braryPat hs>
</ configuration>

One downside to this plugin is that the released version of this plugin at
the time of writing (1.0-beta-4) is written with an older version of JRuby,

version 0.9.9. You should check the plugin's website for the latest
version.

6.5.4. See Also

e JRuby Maven plugin website, http://mojo.codehaus.org/jruby-
maven-plugin/
e Apache Maven website, http://maven.apache.org/

6.6. Writing a Maven Plugin with JRuby
6.6.1. Problem

You are using Apache Maven as a build system and want to reuse some
Ruby script across different projects. A good example of this is to use the
RedCloth Ruby library for generating project documentation using the
Textile markup language.

6.6.2. Solution

Create a new Maven plugin project and add the dependencies discussed
in Section 6.5 to both the project and the maven- pl ugi n-
pl ugi n plugin. Example 6-8 contains a simple pom.xml project descriptor.

Example 6-8. Maven pom.xml file for a JRuby-based Maven
plugin

<pr oj ect >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. j rubycookbook</ gr oupl d>
<artifactld>maven-textil e-plugin</artifactld>
<packagi ng>maven- pl ugi n</ packagi ng>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<name>Maven Textil e Pl ugi n</ nanme>
<descri pti on>
CGenerates site docunentation from Textile sources using
Redd ot h.
</ description>
<dependenci es>
<dependency>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>jruby-nmaven-plugin</artifactld>
<ver si on>1. 0- bet a- 4</ ver si on>
</ dependency>
<dependency>
<gr oupl d>backport-util-concurrent</groupl d>
<artifactld>backport-util-concurrent</artifactld>
<ver si on>3. 0</ ver si on>
</ dependency>
<dependency>
<gr oupl d>asnx/ gr oupl d>
<artifactld>asmall</artifactld>
<ver si on>2. 2. 3</ ver si on>
</ dependency>
</ dependenci es>
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-pl ugi n-plugin</artifactld>
<dependenci es>
<dependency>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>jruby-maven-
pl ugi n</artifactld>
<versi on>1. 0- bet a- 4</ ver si on>
</ dependency>
<dependency>
<gr oupl d>backport-util -
concurrent </ groupl d>
<artifactld>
backport-util-concurrent
</artifactld>
<ver si on>3. 0</ ver si on>
</ dependency>
<dependency>

<gr oupl d>asnx/ gr oupl d>
<artifactld>asmall </artifactld>
<version>2. 2. 3</versi on>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

Install the RedCloth RubyGem:

$ geminstall RedC oth

Then create a Ruby class in the src/main/scripts directory that extends
the Mbj o class provided by the j r uby- maven- pl ugi n plugin. As with
Maven plugins written in Java, the class is annotated with a goal name.
Also similar to Java-based plugins, the plugin can be parameterized. Since
Ruby is dynamically typed, it is necessary to explicitly define the
parameter type using a type attribute of the parameter annotation. Once
any parameters are defined, the plugin's execution logic goes in a method
named execut e. Example 6-9 defines a goal named gener at e that
searches for Textile files and transforms them to HTML using RedCloth.

Example 6-9. Maven plugin written in Ruby

i ncl ude Java

require 'rubygens'
gem ' Redd ot h'
require 'redcloth'

Plugin that will transformall Textile-fornmatted files to HTM
@oal "generate"
cl ass CeneratelMjo < Mjo

@araneter type="java.io.File" default-
val ue="${basedir}/src/main/site/textile"
def sourcebDirectory;;end

@araneter type="java.io.File" default-
val ue="${basedir}/target/site"
def outputDirectory;;end

def execute
$outputDirectory. nkdirs

Dir.chdir $sourcebDirectory. absol ut ePat h
Dir.glob("*.tx") do |entry]|
info "QOpening #{entry}"
open(entry) { |f| @ontents = f.read }
r = RedC ot h. new @ontents
get the filename w thout extension
short _nane = entry.slice(0, entry.length - 3)
out = java.io.File.new$outputDirectory,
"#{short _nane}. html "). absol ut ePat h
info "Witing to #{out}"
open(out, 'w) { |f]
f.puts "<htm ><body>"
f.puts r.to_htn
f.puts "</body></htm >"
}

end

end
end

run_noj o Generat eMdjo

6.6.3. Discussion

In addition to the @oal annotation seen in Example 6-9, the JRuby
Maven plugin supports all of the same class-level annotations as are

supported for Java-based Maven plugins. You can use@hase to bind your
plugin to a particular phase in Maven's build lifecycle, @ equi r esPr oj ect
fal se to allow your plugin to be run without a Maven project, and so on.
A complete list of annotations can be found on the Maven website. One
feature that unfortunately does not work in the current release is
automated plugin documentation. With Java-based plugins, Maven is able
to use these same annotations to build documentation for each goal, but
this does not yet work for JRuby-based plugins.

As with the examples in Section 6.5, it's necessary to set

the j ruby. hone system property through the MAVEN OPTS environment
variable. If you are using a nondefault RubyGem installation location, it is
also necessary to set the GEM HOVE environment variable.

Readers familiar with Maven plugins may note that the code in Example
6-9 is not a Maven report and will not actually be invoked as part of the
Maven site generation process. Since Maven report plugins have some
additional requirements around localization, adding the necessary code to
achieve this is an exercise left to the reader.

6.6.4. See Also

e The Maven Plugin Developer
Center, http://maven.apache.org/plugin-developers/index.html
e JRuby Maven Plugin website, http://mojo.codehaus.org/jruby-
maven-plugin/

6.7. Building Java Projects with Raven

6.7.1. Problem

You need to build a Java project and wish to write your build script using
Ruby rather than XML.

6.7.2. Solution

Use Raven, a build tool for Java project that is based on Ruby's Rake
tool. Raven is essentially an add-on to Rake that provides Rake with
additional Rake tasks to build Java projects. Raven is available as a
RubyGem, so to install it simply run:

$ geminstall raven

To use Raven, create a file named Rakefile in the root of your project and
include all necessary tasks in this file. Example 6-10 contains the simplest
of Raven build scripts.

Example 6-10. Simple Raven build script

require 'raven'

javac 'conpil e’

This script would be executed by running:

$ rake conpile

Or:

$ jruby -S rake conpile

This will compile all the Java files in a directory named sr¢/main/java,
following the Maven project convention (see upcoming sidebar). This
default can be easily overridden, as seen in Example 6-11.

Example 6-11. Changing the default source directory

require 'raven'

javac 'conpile' do |t]
t.build _path << "src/java"
end

6.7.3. Discussion

Because Raven is based on Rake, any existing Rake task can be used
within a Raven build. A good example of this is the cl ean task. Since
Rake includes a clean task, Raven doesn't need to provide one, as seen
in Example 6-12.

Example 6-12. Raven build with Rake tasks

require 'raven'
require 'rake/cl ean'

CLEAN. i ncl ude('target')

javac 'conpile'

Note that Raven actually doesn't require JRuby.

What's the Relationship Between Raven and Maven?

In short, not much. Raven is by no means a port of Maven to
Ruby. If anything, it is much more closely related to Ant than
Maven, especially in that Ant, Rake, and Raven all descend

from make. Unlike Maven (or Buildr, which is discussed in Section
6.11), Raven is a procedural build system.

The Rakefi | e describes a series of steps that need to be
performed to build your project. Maven is (at least in part)

a declarative build system where you provide metadata about
your project and Maven determines the steps that need to be
performed in order to build it.

Raven does follow Maven's directory naming conventions. By
default, Java source files are expected to be in sr¢/main/java,
JUnit tests in src/test/java, compiled Java classes will be put

into target/classes, etc.

Raven also has the ability to import a local Maven repository and
wrap all of the JAR files in RubyGems. This can be done by
running:

$ jruby -S raven inport

6.7.4. See Also

e Raven project website, http://raven.rubyforge.org/
e« Rake documentation, http://docs.rubyrake.org/

6.8. Referencing Libraries with Raven

6.8.1. Problem

You are using Raven to build your Java project and depend upon other
libraries, such as those from Jakarta Commons.

6.8.2. Solution

Use the dependency Raven task to define a set of dependencies and then
reference the set from the tasks that need the dependencies. Example 6-
13 contains a Rakefile for a project that depends upon Jakarta Commons
Logging and Jakarta Commons HttpClient. The dependency on the
HttpClient library is restricted to version 3.1 by using the => operator.

Example 6-13. Rakefile with dependencies

1 require 'raven'

2

3 dependency 'conpil e _deps' do |t|

4 t.deps << ['conmons-1ogging', {'comopns-httpclient' =>
"3.1'}]

5 end

6

7 javac 'conpile' => 'conpile_deps'

8

9 javadoc 'jdoc' => 'conpil e_deps’

6.8.3. Discussion

When used in a task definition, as on lines 7 and 9 of Example 6-13,
the => operator establishes a dependency between tasks.

Raven uses the RubyGems packaging system to manage dependencies by
wrapping JAR files into a RubyGem. In order to avoid, in the words of the
Raven source code, polluting the regular local RubyGem repository,
defined by the GEM_HOME environment variable, Raven stores its
RubyGems in a .raven subdirectory of the user's home directory. As
discussed in the sidebar withinSection 6.7, it is possible to populate this
directory with the contents of a local Maven repository by running:

raven inport

The Raven team makes a public gem repository available

at http://gems.rubyraven.org/ that contains wrapped versions of all of
the libraries in the central Maven repository
(http://repol.maven.org/maven2/). It is possible to set up your own
private repository, as we'll see in the next recipe.

6.9. Hosting a Private Raven Repository

6.9.1. Problem

You are building a Java project with Raven and want to insulate your build
process from any external network problems.

6.9.2. Solution

Create a private Raven repository by importing content from a Maven
repository. This can be done with a few simple commands:

Change / hore/raven bel ow to whatever directory you want to use.
nkdi r /honme/raven

cd /home/raven

raven repository

raven server

BB H

This will import all artifacts from the central Maven repository and then
start a web server on port 2233. To reference this repository in your
Rakefile, add this line after the require statements:

set _sources(["http://local host:2233"])

6.9.3. Discussion

The repository command used above has a few interesting options. First,
it is possible to restrict the import to a subset of the repository by passing
a list of project identifiers to the command. For example, to import only
Jakarta Commons HttpClient and JUnit, you would run:

$ raven repository commons-httpclient junit

It is also possible to import a different Maven repository using the -
moption. For example, to import JBoss's Maven repository, run:

$ raven —m http://repository.jboss. com maven2/ repository

6.10. Running JUnit Tests with Raven
6.10.1. Problem

You are building your Java project with Raven and want to execute some
JUnit unit tests.

6.10.2. Solution

Place your unit tests in the src/test/java directory, create

a dependency task for any test dependencies, and then use

the j uni t Raven task as seen in Example 6-14. By default, Raven will
search for classes whose names start with Test , but in Example 6-14,
this default is overridden to include only those classes with

names ending with Test .

Example 6-14. Unit testing with Raven

require 'raven'

dependency ' conpil e_deps' do |t]

t.deps << ['conmons-1logging , {'commobns-httpclient' =>
"3.1'}]
end

dependency 'test_deps' => 'conpile_deps' do |t]
t.deps << {"junit' => "3.8.2"}
end

javac 'conpile' => 'conpile_deps'
junit '"test' =>['conpile', 'test_deps'] do |t]

t.test _classes << "**/*Test.]ava"
end

You will see the test results on the console. If the tests pass, you'll see an
OK message:

$ rake test
(in /hone/justin/raven-sanpl el)

Runni ng test org.jrubycookbook. SoneTest

Time: O

K (1 test)

A test failure will include the stack trace:

$ rake test
(in /hone/justin/raven-sanpl el)

.Rijlnni ng test org.jrubycookbook. SoneTest

.F

Time: O

There was 1 fail ure:
1)

test Test (org. j rubycookbook. SoneTest)j unit. framewor k. Asserti onFai
edErr or
at org.jrubycookbook. SoneTest .t est Test (SoneTest.java: 8)
at sun.reflect. NativeMet hodAccessor | npl.invokeO(Native
Met hod)
at
sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor
npl .
j ava: 39)
at
sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodA
cces
sorl npl . java: 25)

FAl LURES! !'!
Tests run: 1, Failures: 1, Errors: O

There were fail uresl!

6.10.3. See Also

e« JUnit website, http://www.junit.org

6.11. Building Java Projects with Buildr
6.11.1. Problem

You need to build a Java project and wish to define your project’s build
using Ruby rather than XML.

6.11.2. Solution

Use Buildr, a declarative build system for Java code written in Ruby.
Buildr is available as a RubyGem; installation can be done by running:

$ geminstall buildr

Buildr uses a file named buildfile?? to define a project. A

minimal buildfile such as the one seen in Example 6-15 defines the
project's name (line 11), the project's group (line 13), a description of the
project (line 10), the current version of the project (line 12), and the
packaging type of the project (line 14).

[*21 Buildr will also search for a file named Buildfile.

Example 6-15. Minimal Buildr buildfile

10 desc "The Chapter 6 buildr project”
11 define "ch06-buildr" do

12 project.version = "1.0"

13 project.group = "org.]jrubycookbook"
14 package(:jar)

15 end

Based on this buildfile, Buildr will assume that this is a project containing
Java sources in a directory named sr¢/main/java and JUnit test cases in a
directory named src/test/java. The generated JAR file will be

named ch06-buildr-1.0.jar. To build the project (which for Buildr means
compiling the source code and running the tests), simply run:

$ buildr

To build the JAR file, run:

$ buil dr package

These commands can be run in the project's root directory or any
subdirectory.

6.11.3. Discussion

If you have an existing Java project, especially one that uses Maven as its
build system, Buildr can automatically create this file for you.

Run bui | dr from the project’s root directory and select the appropriate
option:

$ buil dr

To use Buildr you need a buildfile. Do you want ne to create
one?:

1. From maven2 pomfile

2. Fromdirectory structure

3. Skip

? 1

Created / hone/ edel sonj/ kraner/buildfile

When creating a buildfile from an existing Maven project's pom.xml file,
Buildr is able to extract all of the information seen in Example 6-15 as
well as all of the project’'s dependencies. The importer can be a little over-
enthusiastic when it comes to dependencies, so always check the
resulting buildfile. If your Maven project includes submodules, the
generated buildfile will include information about those submodules.

When creating a buildfile from a directory structure, Buildr will only
determine the project's name (using the current directory name) and the
packaging type. Example 6-16 contains a buildfilegenerated in this
manner.

Example 6-16. Generated buildfile

Cenerated by Buildr 1.3.1.1, change to your |iKking
Version nunber for this rel ease

VERSI ON_NUMBER = "1.0. 0"

Version nunmber for the next rel ease

NEXT _VERSION = "1.0. 1"

Group identifier for your projects

GROUP = "buil dr-tenp"

COPYRI GHT = ""

Specify Maven 2.0 renote repositories here, |like this:
repositories.renpte << "http://ww. i biblio.org/ mven2/"

desc "The Buildr-test project”
define "buildr-test"” do

proj ect.version = VERSI ON_NUMBER
proj ect.group = GROUP
mani fest["I npl enent ati on-Vendor"] = COPYRI GHT
conpile.with # Add cl asspat h dependenci es
package(:j ar)

end

Comparing Raven and Buildr

As discussed in Section 6.7, there is a substantial architectural
difference between Raven and Buildr, which parallels the
difference between Ant and Maven. Raven is a procedural build
system—your Rakefile explicitly defines the tasks available to
build your project. Buildr, on the other hand, is a declarative build
system—your buildfileprovides information about your project,
which Buildr uses to determine how to build your project.
Comparing Example 6-15 with some of the sample Raven build
files from recipes earlier in this chapter illustrates this difference—
every task in the Raven builds needs to be declared explicitly
(even if those tasks are set up with intelligent defaults) whereas
the minimal buildfile in Example 6-15 can be used to compile, run
tests, produce javadoc, etc.

To see the full list of available Buildr tasks, run:

$ buil dr hel p: tasks

6.11.4. See Also

o Buildr website, http://incubator.apache.org/buildr/

6.12. Referencing Libraries with Buildr

6.12.1. Problem

You are using Buildr to build your Java project and depend upon other
libraries, such as those from Jakarta Commons.

6.12.2. Solution

Pass the list of dependencies to the conpi | e. wi t h method. Each
dependency is defined by four attributes: group, name, packaging type,
and version. For example, if your code depends upon Apache HttpClient
and Jakarta Commons Logging, you would specify:

conpile.with "org.apache. htt pconponents: httpclient:jar:4.0-
al pha4d",
"org. apache. htt pconponents: httpcore:jar:4.0-betal",
"commons- | oggi ng: commons- 1 ogging:jar:1.1.1"

Buildr will look for dependencies in your local Maven repository (in

the .m2/repository subdirectory of your home directory). If it cannot find
the dependencies there, it will attempt to download them from a remote
repository. As a result, it is also necessary to add this line to

your buildfile:

repositories.renote << "http://repol. maven. or g/ maven2/"

6.12.3. Discussion

Buildr's dependency mechanism is entirely based upon the Maven
repository structure. Unlike Raven, which uses a RubyGems-based
dependency mechanism, any library in an existing Maven repository can
be used as part of a Buildr build. This includes the libraries in

the central repository (at http://repol.maven.org/maven2/), as well as
other public Maven repositories hosted by Sun
(http://download.java.net/maven/2/) and JBoss
(http://repository.jboss.com/maven2/), among others. Individual

developers and software development organizations can also host private
Maven repositories.

Although Buildr will sometimes correctly resolve dependencies
transitively, this functionality does not always work. Expect support for
transitive dependencies to improve in upcoming versions.

6.12.4. See Also

e Introduction to Maven
Repositories, http://maven.apache.org/quides/introduction/introduc
tion-to-repositories.html

6.13. Building with Rake Inside Hudson
6.13.1. Problem

You want to build a software project that uses Rake as its build system in
a continuous manner. This could be on a schedule (i.e., every day at
noon) or upon every submission to a version control system like
Subversion.

6.13.2. Solution

Use a continuous integration server that supports Rake, such as
Hudson. Once the Hudson Rake plugin is installed, you can simply add a
Rake execution to your job, as in Figure 6-1.

Figure 6-1. Rake build step in Hudson job configuration

Build

Invoke Rake Iﬁ,l
Rake Version [jryby-1.1.2 |
Tasks :test [I]

Specify Rake task(z) to run.
| Advanced. |
Delete

Add buld step ~

6.13.3. Discussion

To install the Rake plugin in Hudson, use the Hudson Plugin Manager,
which can be found under the Manage Hudson menu. Inside the Plugin
Manager, select the Available tab to see the list of available plugins.
Check the box next to the Rake plugin listing (Figure 6-2) and click the
Install button. After the plugin has been installed, you will need to restart
Hudson.

Figure 6-2. Rake plugin entry in the Plugin Manager

v Fake plugin 1.0

Hudson's Rake plugin allows you to configure multiple Ruby runtimes.
This allows you to have some projects built against MRl and some
projects built against JRuby within the same continuous integration
server. This is done through the System Configuration screen, seen

in Figure 6-3.

Figure 6-3. Multiple Ruby runtimes in Hudson

Rake

Ruby installation name jruby-1.1.2
RUBY_HOME | fhome/ustin/ruby-1.1.2
Dalste

name cfuby

RUBY_HOME | fysr/lib/ruby

Delete

Add |

Lize of Rake inzvallations on thiz sysrerm

6.13.4. See Also

e Hudson website, https://hudson.dev.java.net/
e http://hudson.gotdns.com/wiki/display/HUDSON/Rake+plugin,
Hudson Rake plugin

6.14. Adding Ruby Script to a Hudson Job
6.14.1. Problem

You have some additional build steps that need to be done as part of your
build process when executed through the Hudson continuous integration
server.

6.14.2. Solution

Use the Hudson Ruby plugin. This plugin allows you to add arbitrary Ruby
script as a build step in your job. Figure 6-4 shows a job with two build
steps. The first executes the Ant target namedwar and the second runs
some Ruby code that copies all WAR files into a temporary directory.

Figure 6-4. Using the Hudson Ruby plugin

Build
Invoke Ant @
Targets [war [I] ©
| Advanced...
Execute Ruby script @
Script [require "ftools”
Dir.glob("*.war").each do [file]
File copy(file, “/mp")
end
See the list of available environment variables
Delete
Add buld step ™

6.14.3. Discussion

As with the Rake plugin discussed in Section 6.13, the Ruby plugin can be
downloaded and installed through Hudson's Plugin Manager. Unlike the
Rake plugin, the Ruby plugin does not support multiple runtimes. It will
only execute the r uby command on your PATH. Thus, if want to use this
plugin with JRuby, it will be necessary to create a copy (or symbolic link)
of the jruby script included with the JRuby distribution named ruby and
ensure that this script is on your PATH before any other Ruby. The plugin

does make debugging simple by outputting the Ruby version number in
the build's console output, like this:

[workspace] $ ruby -v /tnp/hudson35926.rb
ruby 1.8.5 (2007-09-24 patchlevel 114) [i386-Ii nux]

Hudson makes a number of environment variables available to Ruby
scripts executed in this manner. These include the name of the job
(JOB_NAME), the build number (BU LD_NUMBER), and the Hudson URL
(HUDSON_URL). A full listing is available through the Hudson web interface.

6.14.4. See Also

e http://hudson.gotdns.com/wiki/display/HUDSON/Ruby+plugin,
Hudson Ruby plugin

Chapter 7. Testing
Introduction

Unit Testing Java Code with Test/Unit
Unit Testing Java Code with dust

Unit Testing Java Code with Expectations
Testing Java Code with RSpec

Creating Mock Objects with Mocha
Modifying the JtestR Classpath

Grouping Tests for JtestR

Using the JtestR Command-Line Options
Running JtestR with Ant

Running JtestR with Maven

Improving JtestR Performance

7.1. Introduction

The focus of this chapter is the topic of automated testing, specifically,
testing Java code with Ruby. There are several key advantages of using a
dynamic language, such as Ruby, to test code written in a statically typed

language, such as Java:

e Automated test cases tend to require a lot of bootstrapping code.
Using a domain-specific language (DSL) such as those provided by
the Ruby frameworks like dust and Expectations can cut down on

this repetitive code.

e« Dynamic languages make it very easy to create mock objects.
JRuby, for example, allows you to directly instantiate Java

interfaces.

e Open classes allow code to be modified at runtime to facilitate

testing.

There are a variety of testing frameworks available in Ruby, the most
popular of which are wrapped into a JRuby-based project called

JtestR. JtestR is an open source project that Ola Bini and Anda
Abramovici, developers at ThoughtWorks, started in 2008 with the
purpose of making it easy to test Java code with a variety of Ruby testing
frameworks. As of the current version 0.3, JtestR includes support for:

e Test/Unit

e RSpec

e EXxpectations
e dust

e Mocha

In addition, JtestR supports the Java testing frameworks JUnit and
TestNG, making it a "one-stop shop" for testing frameworks.

JtestR is available for download from http://jtestr.codehaus.org.

7.2. Unit Testing Java Code with Test/Unit
7.2.1. Problem

You want to test your Java code using a more concise syntax than is
available from Java testing frameworks such as JUnit and TestNG, but
with a minimal learning curve for developers familiar with JUnit.

7.2.2. Solution

Use JtestR's support for the Ruby testing framework Test/Unit. Test/Unit
uses similar semantics to JUnit:™*3! test cases extend a specific test case
class and test methods follow a naming convention. In the case of
Test/Unit, test cases must extend Test:: Unit:: Test Case and test
methods are prefixed with t est _. Example 7-1 shows a simple Test/Unit
class that tests the si ze() method of j ava. util . ArraylLi st.

31 That is, JUnit prior to the addition of annotation support.

Example 7-1. Simple Test/Unit

class TestArrayList < Test::Unit::TestCase

def test that_size nethod works
list = java.util.ArraylList. new
assert _equal (0, |ist.size)
list << "first’
list << 'second
assert_equal (2, list.size)
end

end

7.2.3. Discussion

Like JUnit, Test/Unit supports the use of a setup method (named set up)
into which you can extract code that needs to be executed prior to each
test. For example, if a second test method was added to Example 7-1, it
would make sense to put the creation of the new ArraylLi st instance into

this set up method, as seen in Example 7-2.

Example 7-2. Test/Unit class with setup method

cl ass Test ArrayList < Test::Unit:: TestCase

def setup
@ist = java.util.ArraylList.new

end

def test that_size nethod works
assert_equal (0, @i st.size)
@ist << 'first'’
@ist << 'second'
assert_equal (2, @i st.size)
end

def test _that_enpty works
assert (@i st. enpty)
@ist << 'first'
@i st << 'second'
assert (! @i st.enpty)
end

end

Test/Unit also supports the use of a method named t ear down for cleanup
after each test is run.

Test/Unit tests can be run without any additional configuration with
JtestR. Simply place the test class files in a directory named test/unit and
start JtestR's command-line test runner. This class, along with all of
JtestR's dependencies can be found in the JtestR JAR file, available from
the JtestR website. You can run the JtestR command-line test runner with
the command:

$ java —cp ~/jtestr-0.3.jar org.jtestr.Jtest RRunner

To reduce the amount of typing necessary, you may want to add the
JtestR JAR file to your classpath:

$ export CLASSPATH=~/jtestr-0.3.jar: $CLASSPATH

When you run JtestR with the default options, your test cases will be
executed and you will see the results on the console:

$ java org.jtestr. Jtest RRunner
Unit TestUnit: 2 tests, O failures, O errors

If the tests do not pass, you will see the test methods that are in failure.
Ifjava. util. ArrayLi st did not perform correctly, you would see
something like the following:

Fai | ure:
test _that _enpty_works(Test ArraylLi st)

<fal se> is not true.

Fai | ure:
test that size method works(Test ArraylLi st)

<2> expected but was
<3>,

Unit TestUnit: 2 tests, 2 failures, O errors

Exception in thread "main" java.l ang. Runti meExcepti on: Tests
failed
at org.jtestr.Jtest RRunner. execut e(Jtest RRunner.java: 117)
at org.jtestr.Jtest RRunner. nai n(Jt est RRunner.j ava: 163)

7.2.4. See Also

e Test/Unit documentation, http://www.ruby-
doc.org/stdlib/libdoc/test/unit/rdoc/

7.3. Unit Testing Java Code with dust
7.3.1. Problem

You want to test your Java code using a more concise syntax than is
available from Java testing frameworks such as JUnit and TestNG, and
find Test/Unit to be too verbose.

7.3.2. Solution

Use Jay Fields's dust library, support for which is included with JtestR.
dust provides an alternate syntax for writing tests that takes advantage
of Ruby language features to create a domain-specific language (DSL) for
testing. Example 7-3 contains the dust version of the tests in Example 7-
2.

Example 7-3. Unit testing with dust

unit_tests do

test "that size nethod works" do
@ist = java.util.ArraylList. new
assert_equal (0, @ist.size)
@ist << '"first'
@ist << 'second'
assert_equal (2, @i st.size)

end

test "that enpty nethod works" do
@ist = java.util.ArraylList. new
assert @ist.enpty
@ist << '"first'
@i st << 'second'
assert ! @ist.enpty

end

end

As with Test/Unit tests, dust tests can be run through JtestR with no
special configuration.

7.3.3. Discussion

Under the covers, dust converts the body of the block passed to

the unit _tests method into a Ruby class in the Uni t s module. The name
is derived from the filename. If Example 7-3 was contained in a file
named lists_test.rb, the generated class would be Units:: Li stsTests.
Each call to the test method is converted to a method in this generated
class. The name of the method is derived from the name given. The
generated class for Example 7-3 includes methods

named test _that _size nmethod works andtest that _enpty nmet hod wo
rks.

In addition to the unit _t ests method seen in Example 7-3, dust also
supports a functi onal _t est s method. The only difference between the
two methods is that tests defined within thef uncti onal _t ests method
are placed in a class in the Functi onal s module.

Under the default JtestR configuration, these generated class and method
names are only seen when a test fails. For example:

Fai | ure:
test _that _size_method_works(Units::ListTests)

<2> expected but was
<3>,

NOTE

Unlike Test/Unit, dust does not support set up or t ear down methods.

7.3.4. See Also

e dust documentation, http://dust.rubyforge.org
e Jay Fields's introduction to
dust, http://blog.javyfields.com/2007/08/rubygems-dust.html

7.4. Unit Testing Java Code with
Expectations

7.4.1. Problem

You want to test your Java code using a more concise syntax than is
available from Java testing frameworks such as JUnit and TestNG and
want to ensure you follow some testing best practices, specifically limiting
the number of assertions per test to one.

7.4.2. Solution

Use JtestR's support for the Expectations framework. Like dust,
Expectations provides a domain-specific language (DSL) for writing tests.
Unlike dust, Expectations does not use the standard Test/Unit assertion
methods. Instead, each test makes an assertion about the return value of
the test. Example 7-4 contains the same tests seen in prior recipes using
Expectations.

Example 7-4. Unit testing with Expectations

Expectati ons do
expect 0 do
list = java.util.ArraylList. new
list.size
end

expect 2 do
list = java.util.ArrayList. new
list << "first'
list << 'second
list.size
end

expect true do
list = java.util.ArraylList. new
list.enmpty

end

expect false do
list = java.util.ArrayList. new
list << "first'
list << 'second
[ist.empty
end
end

JtestR's support for Expectations is not automatic; it must be enabled
through configuration. To do so, first determine the naming convention
you will use for Expectations-based tests. Then create a file

named jtestr_config.rb in the test directory of your project. This file
should contain a line such as the following:

expectation Dir["test/expectations/*.rb"]

In this case, we declare that any file in the test/expectations directory is
meant to be run with Expectations. You could also use a filename-based
naming convention:

expectation Dir["test/**/* expect.rb"]

Or even declare individual files:

expectation Dir["test/unit/list_tests_expect.rb"]

7.4.3. Discussion

The output of Expectations is different than that for Test/Unit or dust
tests, but the information conveyed is similar:

Expectations .F. F
Fi ni shed in 0.00206 seconds

Failure: 2 failed, O errors, 2 fulfilled

--Failures--

file </home/justin/list-tests/test/expectations/test.rb>
line <7>

expected: <3> got: <2>

file </honme/justin/list-tests/test/expectations/test.rb>

line <19>
expected: <true> got: <fal se>

7.4.4. See Also

o Expectations documentation, http://expectations.rubyforge.org

e Jay Fields's introduction to
Expectations, http://blog.jayfields.com/2007/12/ruby-expectation-

gem.html

7.5. Testing Java Code with RSpec
7.5.1. Problem

You want to write behavior-orientated tests for your Java code.

7.5.2. Solution

Use JtestR's support for the RSpec Behavior-Driven Development (BDD)
framework. RSpec is actually composed of two different frameworks for
writing tests: the Spec framework and the Story framework.

7.5.2.1. Spec framework

RSpec Spec tests describe the behavior of an object through a series of
assertions about the behavior of the object. These assertions are referred
to as examples. The Spec file in Example 7-5describes the behavior of
the j ava. util . HashSet class.

Example 7-5. RSpec Spec file for java.util.HashSet

i mport java.util.HashSet

descri be HashSet do
before(:each) do
@et = HashSet. new
end

it "should be enpty" do
@et . shoul d be_enpty
end

it "should be of size one after an itemis added" do
@et << "foo"
@et.size.should == 1
end

it "should be of size one after an itemis added tw ce" do
@et << "foo"
@et << "foo"
@et.size.should == 1
end

it "should be of size two after two itens are added" do
@et << "foo"
@et << "bar"
@et.size.should == 2
end
end

By default, JtestR will execute files in any test directory whose filenames
end with _spec.rb as an RSpec Spec file. If you place the file

from Example 7-5 in the unit directory and execute the command-line
test runner, you will see output like this:

$ java org.jtestr. Jtest RRunner
Unit Spec: 4 exanples, 0 failures, 0 errors

7.5.2.2. Story framework

RSpec stories are generally composed of two files; one that describes the
behavior of an object in more-or-less plain text, referred to as the story,
and another that translates the behavior descriptions in the first file into
method calls on the actual object, referred to as the steps. For

example, Example 7-6 contains a story that describes the behavior of

the ret ai ns() method ofj ava. util. ArrayLi st and Example 7-
7 contains the steps corresponding to this story. These files are
associated with the block at the end of the steps file.

Example 7-6. Story about java.util.ArrayList

Story: retain the content of one ArraylList in another
I want to retain only the contents of one ArrayList in another
To create the union of the two lists

Scenario: there is no overlap
Gven ny ArraylList is a new ArraylLi st
And ny other ArrayList is a new Arrayli st
And ny ArrayLi st contains "one"
And ny ArraylList contains "two"
And ny other Arraylist contains "three"
When | retain only the contents of ny other ArraylList to ny
Arrayli st
Then nmy ArraylList should be enpty

Scenario: there is sone overlap

G ven ny ArrayList is a new Arrayli st
And nmy other ArrayList is a new Arrayli st

And ny ArraylLi st contains "one"

And ny ArraylList contains "two"

And ny ArraylList contains "three"

And ny other Arraylist contains "one"

And ny ot her ArrayList contains "two"

When | retain only the contents of ny other ArrayList to ny

Arrayli st

Then nmy Arrayli st should have a size of 2

And ny ArraylLi st should contain "one"

And ny Arrayli st should contain "two"

Example 7-7. Steps for java.util.ArrayList story

import java.util.ArrayLi st

$lists = { }
steps for(:arraylist) do
Gven('ny $list_name is a new ArrayList') do |list_name|
$lists[list_nanme] = Arraylist.new
end
G ven('ny $list_nane contains "$object"') do |list_nane,
obj ect |

$lists[list_nane] << object
end
Wien('l retain only the contents of nmy $other_list_name to ny
$list_nane') do
| ot her _l'ist_name, |ist_nane|
$lists[list_name].retain_all ($lists[other_list_nane])
end
Then(' ny $list_nanme should have a size of $size') do
| 1'i st_nane, si ze
$lists[list_nane].size.should == size.to_i
end
Then(' ny $list_name should contain "$object"') do
| I'i st_nane, obj ect |
$lists[list_nane].contains(object).should == true
end
Then(' ny $list_name should be enpty') do |list_nane|
$lists[list_nane].should be_enpty
end
end

with steps for(:arraylist) do
run 'test/stories/arraylist.story'
end

To run RSpec stories with JtestR, simply place the story and steps files in
the stories subdirectory of the test directory. If you execute the
command-line test runner, you will see output like this:

$ java org.jtestr.Jtest RRunner
Stories: 2 scenarios, O failures, O errors

7.5.3. Discussion

Both the Spec and Story frameworks benefit from enabling verbose
output. This can be done using command-line options (as described

in Section 7.8) or by creating a jtestr_config.rb file in thetest directory.
For the former, simply place this line in the configuration file:

out put I evel :VERBGCSE

For example, when running the Story and Spec in the examples in this
recipe, the following is output:

$ java org.jtestr. Jtest RRunner

shoul d be enpty(Java::Javaltil:: HashSet):
shoul d be of size one after an itemis
added(Java: : Javaltil :: HashSet):

shoul d be of size one after an itemis added
twi ce(Java::Javaltil :: HashSet):

shoul d be of size two after two itens are
added(Java: : JavaUtil :: HashSet):
Unit Spec: 4 examples, O failures, O errors

there is no overlap(retain the content of one ArraylList in
anot her):

there is sonme overlap(retain the content of one ArraylList in
anot her):

Stories: 2 scenarios, O failures, O errors

For the Spec framework, JtestR supports a variety of output formats.
Most interesting is the HTML output, which allows you to create nice-
looking reports. To enable this, add the following line to

your jtestr_config.rb file:

rspec_formatter ["h", "spec_output.htm"]

This will output the report to a file named spec_output.html. Figure 7-
1 shows a sample of this output.

Figure 7-1. Positive RSpec HTML output

4 examples, 0 failures

RSpec Results Finished in 0.041 seconds

Java::Javallil::-HashSet

should be empty

should be of size one after an 'rte iz acdded

should be of zize one after an tem iz added twice

should be of size two after twoa itemns are added

If one of the examples fails, then your output will illustrate that, as
in Figure 7-2.

7.5.4. See Also

e RSpec website, http://rspec.info
e« Introduction to BDD, http://dannorth.net/introducing-bdd
e Section 7.9"

Figure 7-2. Failed RSpec HTML output

mples, 1 failure

RSpec Results

Java::Javallil::HashSet

I should be empty

I should be of size one after an item is added

I should be of size one after an item is added twice

shaould be of size three after two tems are added

expected: 3,
got: Z {using ==

Jhome fjustin/jtestr-Jjava/test/unic/set_spec.rb:ze

file: //home/justinysjtestr-0.3.jar! /timeout.rh:di:in “timeout'
file://home/sjustin/jtestr-0.3.Jjar! /jtestr/rspec_support.rb:§9:in “run rspec'
file://home/justin/jtestr-0.3.jar!/jtestr/test runher.rh:255:in "run group wich'
file://home/justin/jtestr-0.3.jar! /itestr/test_runher.rb:Z45:in "run_tests'
file: //home/justin/itestr-0.3.jar! /jtestr/test runner.rb:zZ4d2:in “each’

file: f/home/justin/itestr-0.3.Jar! /fjtestr/test runner.rb:zZd2:in "run_tests'
file:/C:/jawasjtestr-0.3.jar! /itestrs test_runmer.rb:4di:in “run'

7.6. Creating Mock Objects with Mocha
7.6.1. Problem

You want to test a Java class that has dependencies on other classes and
want to insulate your tests from changes in the behavior of those other
classes.

7.6.2. Solution

Use Mocha, a Ruby mocking and stubbing framework that is included with
JtestR. Mocha allows you to create instances of Java interfaces and
classes that exhibit a specific behavior. Mock objects can be used in any
type of test supported by JtestR. In Example 7-8, Mocha is used to create
a mock instance of j ava. util. Col | ecti on, which is passed to an
instance of j ava. util. ArraylLi st . This test validates the behavior of

the retai nAl'l () method, specifically that it calls the cont ai ns() method
on the supplied Col | ect i on object the correct number of times.

Example 7-8. Unit test with dust and Mocha

unit_tests do
test "that retainAll only calls contains" do
list = java.util.ArrayList. new
list << "first'
list << 'second'
l[ist << '"third

other = java.util.Collection. nnew
ot her. expects(:contains).returns(true).tines(3)

list.retainAll (other)
end
end

If another ot her method is called on the Col | ecti on object, an exception
will be thrown and the test will fail. For example,

if java. util.ArrayLi st implemented the ret ai nsAl | () method by
iterating through the collection, this error would be output:

#<Mock: Ox4f 4>. contai ns - expected calls: 1, actual calls: O

Meaning that the mock expected the cont ai ns() method to be called, but
that did not occur.

Mocha can also specify the set of parameters to expect. This feature can
be used to enhance the test in Example 7-8 to test that ArraylLi st calls
the cont ai ns() methods in the proper sequence. This new test can be
seen in Example 7-9.

Example 7-9. Expecting a specific parameter

unit _tests do
test "that retainAll calls contains once per itemin the
[ist" do
list = java.util.ArraylList. new
list << "first'
list << 'second
[ist << '"third

other = java.util.Collection.new

ot her. expects(:contains).with('first').returns(true)
ot her. expects(:contains).with('second).returns(true)
ot her. expects(:contains).with('third).returns(true)

list.retainAll (other)
end
end

7.6.3. Discussion

Mocha can create mock objects for Java classes as well as interfaces. To
mock a class, pass the class to the nock method. The only restriction on
mocking concrete classes is that you cannot mock final classes or
methods. For example, you cannot create a mock instance

of j ava. | ang. Stri ng like this:

s = nock(java.l ang. Stri ng)
s.expect (:length).return(5b)

By default, when you create a mock for concrete classes, none of the
original behavior of the class is retained—any method that will be called
needs to be defined through the expect s method. This behavior can be
altered by passing an array of method names to the mock method. This
functionality can lead to some confusing results, as seen in Example 7-10,
So use it with caution.

Example 7-10. Mocking a concrete class with preserved
methods

unit _tests do
test "that using a Java class in JRuby string calls toString"
do
preservedMet hods = ['size',
Jtest R : Mocha: : METHODS _TO LEAVE _ALONE] . fl atten

list = nock(java.util.ArrayList, preservedMet hods)
[ist.expects(:add).tinmes(2).returns(true)
assert list.size == 0

|ist.add "one"
[ist.add "two"

assert list.size == 0 # this is zero because the add
nmet hod i s nocked
end
end

7.6.4. See Also

e Mocha website, http://mocha.rubyforge.org/

7.7. Modifying the JtestR Classpath

7.7.1. Problem

You need to test classes that are not available on JtestR's default
classpath. By default, JtestR's classpath includes the following directories:

e build/classes
build/test_classes
target/classes
target/test_classes

The default classpath also includes all JAR files in
the lib and build_lib directories (and any subdirectories).

7.7.2. Solution

Use the JtestR configuration file, by default named jtestr_config.rb and
placed in the test directory, to define the correct classpath. For example,

to set the classpath to be the bin directory, your configuration file would
contain:

classpath 'bin'

Multiple classpath definitions can be included in the configuration file.

7.7.3. Discussion

Using the cl asspat h configuration option as described above will
overwrite the default classpath. To add the default entries back, put this
line to your configuration file:

add_comon_cl asspath true

7.8. Grouping Tests for JtestR
7.8.1. Problem

You have a number of tests run through JtestR and want to group them.

7.8.2. Solution

Follow JtestR's directory naming conventions to group your tests. Within
the main test directory, JtestR will automatically group your tests based
on the directory they are in and will execute these groups in a particular
order:

Unit tests, those in the unit directory.

Functional tests, those in the functional directory.
Integration tests, those in the integration directory.
Other tests, those that are not in the unit, functional,
or integration directories.

PONPE

The tests within each of these directory-based groups are then further
grouped based on the testing framework used. When you run the test
runner and have tests in multiple groups, you will see the test results
grouped:

Unit TestUnit: 4 test, O failures, O errors
Integration TestUnit: 2 test, O failures, 0 errors

Here we see that there were four tests in the unit directory and two tests
in the integration directory, all of which used Test/Unit.

7.8.3. Discussion

Although JtestR provides these automatic directory-based groups, there is
nothing actually different about the environment under which unit tests
run as compared with functional or integration tests.

7.9. Using the JtestR Command-Line Options

7.9.1. Problem

You want to customize the behavior of the JtestR command-line test
runner in some way, such as limiting the tests to be run or enabling
additional logging.

7.9.2. Solution

The JtestR command-line test runner has a number of options that can be
configured through command-line arguments. Unfortunately these
arguments must be passed in a specific sequence that you must adhere
to:

port

This argument, which defaults to 22332, allows you to connect the
test runner to a long-lived server process. This reduces the
amount of time required to perform a test run. This capability is
discussed in Section 7.9.

tests

This argument, which defaults to test, specifies the top-level
directory in which test group directories can be found.

| oggi ng

This argument specifies the logging level for JtestR. Possible
values are NONE, ERR, WARN, | NFO, and DEBUG. The default is WARN.

configFile

This argument specifies the filename of the JtestR configuration
file.

out put Level

This argument specifies how much information about each test is
output. Possible values are NONE, QUI ET, NORMVAL, VERBCSE,
and DEFAULT.

out put

This argument provides JtestR with the output location. The
default is sTDOUT.

gr oups

This argument defines the test group (or groups, in which case
they should be comma-delimited) that will be run. The default is
to run all tests discovered.

One typical use of these arguments is to output the name of each test as
it is run. As you can see from the output above, by default, JtestR only
outputs an individual test name if something goes wrong. By setting

the out put Level argument to VERBOSE, you can have it output each test
name:

$ java org.jtestr.Jtest RRunner 22332 test WARN jtsetr_config.rb
VERBOSE

test _that_enpty_works(Test ArraylList):

test _that_size_method_works(Test ArraylList):

Unit TestUnit: 1 test, O failures, O errors

7.9.3. See Also

e Section 7.8"
e Section 7.12"

7.10. Running JtestR with Ant

7.10.1. Problem

You are building a project with Apache Ant and want to add tests written
in Ruby.

7.10.2. Solution

Use the Ant task provided with JtestR. This can be done by adding the
following task definition to your Ant build.xml file:

<t askdef name="jtestr"
cl assnane="org.jtestr.ant. Jtest RAnt Runner"
classpath="lib/jtestr-0.3.jar" />

Then call this task from inside an Ant target:
<target nanme="test">

<jtestr />
</target>

This target can then be run from the command line:

$ ant test

7.10.3. Discussion

The JtestR Ant task supports all of the options used by the command-line
test runner (see Section 7.9). For example, to turn on verbose output,
your target would look like this:

<target nanme="test">
<jtestr outputlLevel ="VERBCOSE" />
</target>

In addition to the command-line options, there is a f ai | OnErr or option
that defaults to t r ue. Use this option if you want the Ant build to continue
even if the tests fail.

7.10.4. See Also

« Ant website, http://ant.apache.orqg/
e Section 7.7"
e Section 7.12"

7.11. Running JtestR with Maven
7.11.1. Problem

You are building a project with Maven and want to add tests written in
Ruby.

7.11.2. Solution

Use the Maven plugin provided with JtestR. This can be done by adding
the following plugin reference to your pom.xml file:

<pl ugi n>
<groupl d>org.jtestr</groupld>
<artifactld>jtestr</artifactld>
<ver si on>0. 3</ ver si on>
<executions>
<executi on>
<goal s>
<goal >t est </ goal >
</ goal s>
</ execution>
</ executi ons>
</ pl ugi n>

Once this is in place, JtestR will automatically run whenever Maven's test
phase is executed.

Unfortunately, the latest release (0.3) of JtestR's Maven support has a
dependency on a nonstandard JRuby library. As a result, when you try to
use the plugin, you may see this error:

[ERROR] BUI LD ERROR
2

[INFO Failed to resolve artifact.

1) org.jruby:jruby-conplete:jar:r6947
Try downl oading the file manually fromthe project website.

1 required artifact is mssing.

for artifact:
org.jtestr:jtestr: maven-plugin: 0.3

To correct this, download the JAR

from http://dist.codehaus.org/jtestr/jruby-complete-r6947.jar and install
it into your local Maven repository. This can be done with these
commands:

$ wget http://dist.codehaus.org/jtestr/jruby-conplete-r6947.jar
$ nvn install:install-file -Dfile=jruby-conplete-r6947.jar -
Dver si on=r 6947 \

-Dartifactld=jruby-conpl ete -Dpackagi ng=j ar -Dgroupl d=org.jruby

7.11.3. Discussion

The JtestR Maven plugin supports all of the options used by the
command-line test runner (see Section 7.8). For example, to only run
unit tests, your plugin configuration would look like this:

<pl ugi n>
<groupl d>org.jtestr</groupl d>
<artifactld>jtestr</artifactld>
<ver si on>0. 3</ ver si on>
<executions>
<executi on>
<goal s>
<goal >t est </ goal >
</ goal s>
</ execution>
</ executions>
<configuration>
<groups>Unit Test Unit</groups>
</ configuration>
</ pl ugi n>

In addition to the command-line options, there is a f ai | OnErr or option
that defaults to t r ue. Use this option if you want the build to continue
even if the tests fail.

7.11.4. See Also

« Maven website, http://maven.apache.orqg/
e Section 7.7"
e Section 7.12"

7.12. Improving JtestR Performance

7.12.1. Problem

You are using JtestR and want to accelerate the execution times of your
unit tests.

7.12.2. Solution

Start a JtestR server in the background. This can be done with the
class org. jtestr. BackgroundServer :

$ java org.jtestr. BackgroundServer

By default, this will create a server on port 22332 with two runtimes,
meaning that two sets of tests can be run simultaneously. To change
these options, you can use command-line arguments: the port followed

by the number of runtimes. For example, to start five runtimes listening
on port 1000 you would run:

$ java org.jtestr.BackgroundServer 1000 5

Note that if you deviate from the default port, you will need to specify this
when you start the test runner. For example, with the command-line test
runner, this is the first option:

$ java org.jtestr.Jtest RRunner 1000

7.12.3. Discussion

JtestR also includes classes that allow this test server to be run from
inside an Ant or Maven build. For Ant, this is done with
the Jt est RAnt Ser ver class:

<target nane="server">
<t askdef nanme="jtestr-server"
cl assnane="org.jtestr.ant. Jt est RAnt Server"
classpath="lib/jtestr-0.3.jar" />
<jtestr-server />
</target>

For Maven, if you have the JtestR Maven plugin configured in
your pom.xml, you can start the server by running this on the command
line:

$ nmvn jtestr:server

7.12.4. See Also

e Section 7.10"
e Section 7.11"

Chapter 8. The JRuby Community

Introduction
Building JRuby from Source
Submitting an Issue Report for JRuby

Using the JRuby Mailing Lists

8.1. Introduction

This final chapter includes a series of recipes about how to participate in
the JRuby community. First, we will look at building JRuby from source,
something that most developers looking to peek under the covers of
JRuby will need to do at some point. We will also do a quick walkthrough
of JRuby's issue management system before finishing up with some
information about the ways in which JRuby community members
communicate with each other.

8.2. Building JRuby from Source
8.2.1. Problem

You need to build JRuby from the source files. This could be to take

advantage of some unreleased code or to create a JRuby JAR file for
distribution.

8.2.2. Solution

Download the source using a Subversion client:

$ svn co http://svn.codehaus. org/jruby/trunk/jruby/

JRuby is built using Apache Ant. There are a number of useful Ant targets
in the provided build script:

j ar

Creates the jruby.jar file.

jar-conplete

Creates the jruby-complete.jar file, which includes all of the
contents from jruby.jar and all of the Ruby standard libraries.

t est

Runs the JRuby unit test suite.

di st-bin

Creates the JRuby binary distribution, i.e., the ZIP file that you
download from http://dist.codehaus.org/jruby/.

8.2.3. Discussion

The Subversion command above will check out the most recent version of
the source code (the trunk) from the JRuby repository. However, some
times it is necessary to check out the source core that corresponds to a
release. This can be done by checking out one of the tags

under http://svn.codehaus.org/jruby/tags/. For example, the source of
the JRuby 1.1 release can be found
athttp://svn.codehaus.org/jruby/tags/jruby-1_1/.

The Ant script also includes two targets that relate to JRuby's
compatibility with other Ruby interpreters. Although there is no formal
language specification for Ruby, a wide-ranging test suite has been
created as part of the Rubinius project. JRuby's Ant script includes the
following targets that relate to these specifications:

spec

Test all of the released specifications that JRuby is known to be
able to pass.

spec- al |

Test all of the released Ruby specifications.

spec- show excl udes

List the specifications that JRuby is known to not be able to pass.

spec- | at est
Test all of the available Ruby specifications that JRuby is known

to be able to pass, first obtaining the specification files from
source control.

spec-l atest-all

Test all of the available Ruby specifications, first obtaining the
specification files from source control.

8.2.4. See Also

e Rubinius specs
documentation, http://rubinius.lighthouseapp.com/projects/5089/t
he-rubinius-specs

8.3. Submitting an Issue Report for JRuby

8.3.1. Problem

You have discovered a problem with JRuby or wish to request a feature to
be added in a future version.

8.3.2. Solution

JRuby uses Atlassian JIRA as its issue-tracking tool. You can view the list
of issues and create new issue reports by going

to http://jira.codehaus.org/browse/JRUBY. You can browse issues
anonymously, but must register and log in before creating a new issue or

commenting on an existing issue. Before creating an issue, please search
previously submitted issues to avoid duplication.

Assuming you want to create an issue and have logged in, click the
Create New lIssue link in the main navigation to start the issue creation
process. Figure 8-1 shows the resulting dialog.

Figure 8-1. JIRA Create Issue dialog

icodehaus

| —————— Usar: Justin Edalson Fillars | Frofila | Log Out C3 [

HOME ERODWSE PROJECT FIND ISSUES CREATE NEW ISSUE ADMINISTRATION DUICK SEARCH:

Create Issue

Step 1of 2: Choose the project and issue type..

" Project | JRuby ~
* fsswe Type: | Bug « @

Pawered by & Free Atlaszian JIRA open fource license for Codeklaus, Try JIRA - hug tracking softvare For pour team,

Atlasgian JIRA the Professional Jgye Tracker. (Enterprize Edition, Version: 3.12.2-#300) - Byalfestyre request - Atlagsian news - Contact

Adrninigtrators

Once you have selected the appropriate issue type and clicked Next, you
should populate the following form with as much information as possible.
This will assist JRuby developers in fully understanding the issue.

8.3.3. Discussion

At the bottom of the Issue Details form are two form fields, seen in Figure
8-2, that provide you with an opportunity to prioritize the handling of
your issue.

Figure 8-2. Testcase and Patch form fields

Testcase included: & pone

O yes

Are junit tests included inyour pateh/bug repod? (bug and enhancementwath an attached junit test case will have an higher priority)

Patch Submitted: [yesg

The first, "Testcase included," allows you to specify that you have
attached (or will attach) a test that demonstrates the issue in a
repeatable manner. The ability to reliably reproduce an issue is vital to
resolving it. The second, "Patch Submitted,” allows you to specify that
you have attached (or will attach) a patch to the JRuby source that
resolves the issue. It is common to create a patch against the latest
source from version control, not the most recent release.

8.3.4. See Also

« Section 8.4"

8.4. Using the JRuby Mailing Lists
8.4.1. Problem

You need assistance with JRuby or a related tool.

8.4.2. Solution

Subscribe to the JRuby User mailing list. Subscriptions are managed
through Xircles, a project management system developed for use by the
Codehaus. You can see the available JRuby mailing lists by going

to http://xircles.codehaus.org/projects/jruby/lists. A searchable archive of
the mailing list is also available on this page.

8.4.3. Discussion

In addition to the mailing lists, JRuby core developers can frequently be
found in the #jruby IRC channel on irc.freenode.net. Conversations on
this channel are logged and an archive is available

through http://codingbitch.com/irc/channel?channel=%23jruby.

Appendix. Colophon

The animal on the cover of JRuby Cookbook is an African civet (Civettictis
civetta). Unlike the other members of the Viverridae family, which
resemble cats, the African civet is a dog-like animal with large
hindquarters and a low-head stance. Its coat is gray with black stripes
and spots, and it has a gray face, a white snout, and dark markings
around its eyes like a raccoon. Along its back runs a short mane of stiff
hairs that stand on end when the civet is alarmed. From head to tail, an
African civet is about 4 feet long, and it weighs 30 to 40 pounds.

The African civet ranges across sub-Saharan Africa in forests and
savannas. Solitary and nocturnal, it hides in caves or tree hollows during
the day. It eats anything edible, including insects, plants, and carrion,
and it preys on small animals such as hares and moongooses. Like all
civets, the African civet has glands that produce a scented fluid, which it
uses to mark its territory. This musk, known as civetone or simply civet,
is one of the oldest known ingredients in perfumes. Although it is still
used in the perfume industry today, the trade for civet musk has been on
the decline since synthetic musk was introduced in the mid-1900s.

The cover image is from Richard Lydekker's Royal Natural History. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSansMonoCondensed.

	JRuby Cookbook
	Copyright
	Preface
	Chapter 1. Getting Started
	1.1. Introduction
	1.1.1. Ruby
	Example 1-1. Introduction to Ruby blocks
	Example 1-2. Loop in Java
	Example 1-3. Loop in Ruby

	1.1.2. JRuby

	1.2. Installing JRuby
	1.2.1. Problem
	1.2.2. Solution
	1.2.3. Discussion
	1.2.3.1. Windows
	Figure 1-1. Extracted JRuby binary build
	Figure 1-2. Command-line jirb
	Figure 1-3. jirb GUI
	Figure 1-4. Windows Environment Variables
	1.2.3.2. Linux and Mac OS X
	Example 1-4. Example .profile file that adds JRuby to the PATH environment variable

	1.2.4. See Also

	1.3. Managing Packages with RubyGems
	1.3.1. Problem
	1.3.2. Solution
	1.3.3. Discussion
	1.3.4. See Also

	1.4. Using Both Ruby and JRuby
	1.4.1. Problem
	1.4.2. Solution
	1.4.3. Discussion
	1.4.4. See Also

	1.5. Sharing RubyGems
	1.5.1. Problem
	1.5.2. Solution
	1.5.3. Discussion

	1.6. Referencing Java Classes from Ruby
	1.6.1. Problem
	1.6.2. Solution
	Example 1-5. Creating a Java TreeMap from Ruby
	Example 1-6. Referencing a Java class with include_class
	Example 1-7. Creating an alias to avoid class name conflicts
	Example 1-8. Aliasing multiple classes with case
	Example 1-9. Wrapping a Java package with a Ruby module

	1.6.3. Discussion
	Example 1-10. Ruby to Java type conversion
	Example 1-11. Accessing static methods and variables

	1.7. Converting a Ruby Array into a Java Array
	1.7.1. Problem
	1.7.2. Solution
	1.7.3. Discussion

	1.8. Adding JAR Files to the Classpath
	1.8.1. Problem
	1.8.2. Solution
	1.8.3. Discussion
	Example 1-12. Creating a JAR file path dynamically

	1.9. Extending a Java Class in Ruby
	1.9.1. Problem
	1.9.2. Solution
	Example 1-13. Subclassing a Java class in Ruby

	1.9.3. Discussion
	Example 1-14. An abstract Java class
	Example 1-15. Ruby class that subclasses an abstract Java class

	1.10. Implementing a Java Interface in Ruby
	1.10.1. Problem
	1.10.2. Solution
	Example 1-16. Ruby implementation of a Java interface

	1.10.3. Discussion
	Example 1-17. Declaring Java interfaces in JRuby
	Example 1-18. JRuby working with Java interfaces—condensed version
	Example 1-19. Implementing a Java interface with a module
	Example 1-20. Using JRuby's impl method
	Example 1-21. Implementing a Java interface with a Ruby block

	1.10.4. See Also

	1.11. Opening Java Classes with JRuby
	1.11.1. Problem
	1.11.2. Solution
	1.11.3. Discussion
	Example 1-22. Adding a method to HashMap
	Example 1-23. A simple class to generate a HashMap object
	Example 1-24. Applying open class semantics to an instance created with Java code
	Example 1-25. Using extend_proxy to open all implementations of an interface

	1.11.4. See Also

	1.12. Setting Up Eclipse for JRuby Development
	1.12.1. Problem
	1.12.2. Solution
	1.12.3. Discussion
	1.12.3.1. RDT
	Figure 1-5. RDT Add RubyVM dialog
	1.12.3.2. DLTK
	Figure 1-6. DLTK "Add interpreter" dialog
	1.12.3.3. Running JRuby as a Java application
	Figure 1-7. Generic JRuby launch configuration
	Figure 1-8. Eclipse variable input dialog

	1.12.4. See Also

	1.13. Setting Up NetBeans for JRuby Development
	1.13.1. Problem
	1.13.2. Solution
	Figure 1-9. Installing the NetBeans Ruby plugin with the Plugins dialog

	1.13.3. Discussion
	Figure 1-10. NetBeans Ruby Platform Manager dialog
	Figure 1-11. NetBeans Ruby code completion
	Figure 1-12. NetBeans Fonts & Colors Options dialog

	1.13.4. See Also

	1.14. Platform Detection in a JRuby Application
	1.14.1. Problem
	1.14.2. Solution
	Example 1-26. JRuby platform detection

	1.14.3. Discussion

	Chapter 2. JRuby on Rails
	2.1. Introduction
	2.2. Installing and Setting Up Rails
	2.2.1. Problem
	2.2.2. Solution
	Figure 2-1. Ruby on Rails welcome screen

	2.2.3. Discussion
	Example 2-1. Example database.yml using JDBC
	Example 2-2. Example database.yml using activerecord-jdbcmysql-adapter

	2.2.4. See Also

	2.3. Packaging Rails As a Java EE Web Application
	2.3.1. Problem
	2.3.2. Solution
	Example 2-3. Example Warbler configuration file

	2.3.3. Discussion
	2.3.4. See Also

	2.4. Using an External Gem Repository witha Web Application
	2.5. Configuring the JRuby-Rack Servlet
	2.5.1. Problem
	2.5.2. Solution
	2.5.3. Discussion
	2.5.4. See Also

	2.6. Packaging Rails with a JNDI DataSource
	2.6.1. Problem
	2.6.2. Solution
	2.6.3. Discussion
	2.6.4. See Also

	2.7. Deploying Rails on Tomcat
	2.7.1. Problem
	2.7.2. Solution
	2.7.2.1. Windows
	2.7.2.2. Linux and OS X

	2.7.3. Discussion
	Example 2-5. Tomcat context.xml JNDI configuration

	2.7.4. See Also

	2.8. Deploying Rails on JBoss
	2.8.1. Problem
	2.8.2. Solution
	2.8.2.1. Windows
	2.8.2.2. Linux and OS X

	2.8.3. Discussion
	Example 2-6. Sample mysql-ds.xml JBoss DataSource configuration file
	Example 2-7. Sample JBoss deployment descriptor

	2.8.4. See Also

	2.9. Deploying Rails on Jetty
	2.9.1. Problem
	2.9.2. Solution
	2.9.3. Discussion
	Example 2-8. Sample jetty-env.xml file

	2.9.4. See Also

	2.10. Deploying Rails with jetty_rails
	2.10.1. Problem
	2.10.2. Solution
	2.10.3. Discussion
	Example 2-9. Sample jetty_rails.xml configuration file

	2.10.4. See Also

	2.11. Deploying Rails with Mongrel
	2.11.1. Problem
	2.11.2. Solution
	2.11.3. Discussion

	2.12. Deploying Rails on the GlassFish v2 Server
	2.12.1. Problem
	2.12.2. Solution
	Figure 2-2. Starting up the GlassFish server

	2.12.3. Discussion
	2.12.4. See Also

	2.13. Using the GlassFish v3 Gem
	2.13.1. Problem
	2.13.2. Solution
	2.13.3. Discussion
	2.13.4. See Also

	2.14. Using ActiveRecord Outside of Rails
	2.14.1. Problem
	2.14.2. Solution
	Example 2-10. Sample database.yml file
	Example 2-11. Loading a database.yml file and accessing the database

	2.14.3. Discussion
	Figure 2-3. jirb session using ActiveRecord and a JDBC connection

	2.15. Accessing Common Java Servlet Information
	2.15.1. Problem
	2.15.2. Solution
	Example 2-12. Accessing the Java servlet objects from a Rails controller

	2.15.3. Discussion
	2.15.4. See Also

	2.16. Configuring Session Storage
	2.16.1. Problem
	2.16.2. Solution
	2.16.3. Discussion
	2.16.4. See Also

	2.17. Controlling the Classes, Directories, and Other Files Packaged into a Rails WAR File
	2.17.1. Problem
	2.17.2. Solution
	2.17.3. Discussion
	2.17.4. See Also

	2.18. Changing the Name of the WAR File and the Staging Area
	2.18.1. Problem
	2.18.2. Solution
	2.18.3. See Also

	2.19. Deploying a Rails Application to the Root Context
	2.19.1. Problem
	2.19.2. Solution
	2.19.3. Discussion
	2.19.3.1. Tomcat
	Example 2-13. Changing the context path for a Tomcat deployment
	2.19.3.2. JBoss
	Example 2-14. Changing the context path for a JBoss deployment
	2.19.3.3. Jetty
	Example 2-15. Changing the context path for a Jetty deployment

	2.19.4. See Also

	2.20. Creating a Rails Application with Aptana Studio
	2.20.1. Problem
	2.20.2. Solution
	Figure 2-4. Aptana Studio: RadRails installation options
	Figure 2-5. RadRails Interface and Welcome screen

	2.20.3. Discussion
	Figure 2-6. Aptana Rails Shell

	2.20.4. See Also

	2.21. Accessing Static Files in Your Rails Java EE Application
	2.21.1. Problem
	2.21.2. Solution
	Example 2-16. Public directory detection code

	2.21.3. Discussion
	Example 2-17. Patching functions that serve static files

	2.21.4. See Also

	Chapter 3. Java Integration
	3.1. Introduction
	3.2. Executing Ruby from Java
	3.2.1. Problem
	3.2.2. Solution
	Example 3-1. Calling Ruby from Java

	3.2.3. Discussion
	Example 3-2. Using the current JRuby runtime
	Figure 3-1. Setting the jruby.home system property with Eclipse
	Example 3-3. Setting the jruby.home system property with Apache Ant

	3.2.4. See Also

	3.3. Invoking JRuby Through the Bean Scripting Framework
	3.3.1. Problem
	3.3.2. Solution
	Example 3-4. Invoking JRuby with BSF

	3.3.3. Discussion
	Example 3-5. Using declareBean()

	3.3.4. See Also

	3.4. Invoking JRuby Through Java Scripting Support
	3.4.1. Problem
	3.4.2. Solution
	Example 3-6. Invoking JRuby through javax.script.ScriptEngineManager

	3.4.3. Discussion
	Example 3-7. Creating a global variable with JSR 223

	3.4.4. See Also

	3.5. Logging from Ruby with Jakarta Commons Logging
	3.5.1. Problem
	3.5.2. Solution
	Example 3-8. Custom JRuby LogFactory bridge class
	Example 3-9. Using the JRubyLogFactory bridge class

	3.5.3. Discussion

	3.6. Using the Java Concurrency Utilities
	3.6.1. Problem
	3.6.2. Solution
	Example 3-10. Using a java.util.concurrent thread pool from Ruby

	3.6.3. Discussion
	Example 3-11. Using a ConcurrentHashMap like a Hash

	3.7. Creating JavaBean Style Accessor Methods
	3.7.1. Problem
	3.7.2. Solution
	Example 3-12. Helper module for JavaBean accessors

	3.7.3. Discussion

	3.8. Writing Consistent Code
	3.8.1. Problem
	3.8.2. Solution
	3.8.3. Discussion

	3.9. Transforming XML with TrAX
	3.9.1. Problem
	3.9.2. Solution
	Example 3-13. Using TrAX from JRuby

	3.9.3. Discussion
	Example 3-14. Implementing javax.xml.transform.ErrorListener in Ruby
	Example 3-15. Implementing javax.xml.transform.URIResolver in Ruby

	3.10. Creating a Pool of JRuby Runtimes
	3.10.1. Problem
	3.10.2. Solution
	Example 3-16. Creating a pool of JRuby runtimes

	3.10.3. Discussion
	3.10.4. See Also

	3.11. Performing Remote Management with JMX
	3.11.1. Problem
	3.11.2. Solution
	3.11.3. Discussion
	Example 3-17. Querying MBeans

	3.11.4. See Also

	3.12. Accessing Native Libraries with JRuby
	3.12.1. Problem
	3.12.2. Solution
	Example 3-18. JNA example showing Windows disk space

	3.12.3. Discussion
	3.12.4. See Also

	Chapter 4. Enterprise Java
	4.1. Introduction
	4.2. Creating a JNDI Context
	4.2.1. Problem
	4.2.2. Solution
	Example 4-1. Creating a custom JNDI Context

	4.2.3. Discussion
	4.2.4. See Also

	4.3. Sending JMS Messages
	4.3.1. Problem
	4.3.2. Solution
	Example 4-2. Sending a JMS message from Ruby

	4.3.3. Discussion
	Figure 4-1. JRuby message in the ActiveMQ web client

	4.4. Receiving JMS Messages
	4.4.1. Problem
	4.4.2. Solution
	Example 4-3. Receiving a JMS message

	4.4.3. Discussion

	4.5. Implementing an Enterprise JavaBean with JRuby
	4.5.1. Problem
	4.5.2. Solution
	Example 4-4. EJB local interface
	Example 4-5. JRuby EJB
	Example 4-6. Servlet accessing the JRuby EJB

	4.5.3. Discussion
	Example 4-7. JRuby EJB with web service annotations
	Figure 4-2. Testing the JRuby EJB web service

	4.5.4. See Also

	4.6. Defining Spring Beans in JRuby
	4.6.1. Problem
	4.6.2. Solution
	Example 4-8. Simple Spring JRuby bean definition
	Example 4-9. Simple interface for Spring bean
	Example 4-10. Ruby script referenced from Spring configuration

	4.6.3. Discussion
	Example 4-11. Using JRuby within a BeanFactory won't work
	Example 4-12. Using JRuby within an ApplicationContext
	Example 4-13. Ruby script that will confuse Spring

	4.6.4. See Also

	4.7. Creating Refreshable JRuby Spring Beans
	4.7.1. Problem
	4.7.2. Solution
	4.7.3. Discussion
	Example 4-14. Refreshable JRuby Spring bean called by a TimerTask
	Example 4-15. The SendDateTask class
	Example 4-16. Starting an ApplicationContext with Timer support

	4.8. Defining JRuby Spring Beans Inline
	4.8.1. Problem
	4.8.2. Solution
	Example 4-17. JRuby script inside an inline-script element

	4.9. Applying Spring-Aware Interfaces to JRuby Objects
	4.9.1. Problem
	4.9.2. Solution
	4.9.3. Discussion
	Example 4-18. Inline JRuby Spring bean that implements the BeanNameAware interface
	Example 4-19. Ruby module implementing Spring aware interfaces
	Example 4-20. Using a Spring module

	4.9.4. See Also

	4.10. Creating Spring MVC Controllers with JRuby
	4.10.1. Problem
	4.10.2. Solution
	Example 4-21. Spring configuration file with simple JRuby controller
	Example 4-22. JRuby class as a Spring MVC controller
	Example 4-23. Simple JSP template

	4.10.3. Discussion
	Example 4-24. Inline JRuby controller definition

	4.10.4. See Also

	4.11. Using Hibernate with JRuby
	4.11.1. Problem
	4.11.2. Solution
	Example 4-25. Accessing Hibernate Data Access Objects

	4.11.3. Discussion
	Example 4-26. Using blocks to define transactions

	4.12. Using the Java Persistence API with JRuby
	4.12.1. Problem
	4.12.2. Solution
	Example 4-27. Example JPA access from JRuby

	4.12.3. Discussion
	4.12.4. See Also

	4.13. Making SOAP Calls
	4.13.1. Problem
	4.13.2. Solution
	Example 4-28. Making a SOAP request with the Mule client module

	4.13.3. Discussion
	4.13.4. See Also

	4.14. Simplifying LDAP Access
	4.14.1. Problem
	4.14.2. Solution
	4.14.3. Discussion
	Example 4-29. Adding methods to the LdapCtx class

	Chapter 5. User Interface and Graphics
	5.1. Introduction
	5.2. Creating Swing Applications
	5.2.1. Problem
	5.2.2. Solution
	Example 5-1. Simple Swing UI

	5.2.3. Discussion
	Example 5-2. Changing the application's look and feel

	5.2.4. See Also

	5.3. Swing Event Handling
	5.3.1. Problem
	5.3.2. Solution
	Example 5-3. Events handled through block coercion

	5.3.3. Discussion
	Example 5-4. Events handled through an instance of a Java interface

	5.3.4. See Also

	5.4. Long-Running Tasks in Swing Applications
	5.4.1. Problem
	5.4.2. Solution
	Example 5-5. Using the SwingWorker for long-running jobs

	5.4.3. Discussion
	5.4.4. See Also

	5.5. Packaging Standalone Applications
	5.5.1. Problem
	5.5.2. Solution
	Example 5-6. Example Rawr configuration file
	5.5.2.1. Executable JAR
	5.5.2.2. Windows executable
	5.5.2.3. Mac OS X application

	5.5.3. Discussion
	5.5.4. See Also

	5.6. Packaging JRuby Web Start Applications
	5.6.1. Problem
	5.6.2. Solution
	Example 5-7. Web Start parameters in Rawr configuration file

	5.6.3. Discussion
	5.6.4. See Also

	5.7. Creating JRuby Applets
	5.7.1. Problem
	5.7.2. Solution
	Example 5-8. JRuby applet with content pane in a global variable
	Example 5-9. Applet tag for a JRuby applet
	Example 5-10. JavaScript applet deployment

	5.7.3. Discussion
	Example 5-11. JRuby applet, alternate implementation
	Example 5-12. JRuby applet using Java Scripting
	Example 5-13. Applet using Java Scripting and a global variable

	5.7.4. See Also

	5.8. Manipulating Images
	5.8.1. Problem
	5.8.2. Solution
	5.8.2.1. RMagick4J
	Example 5-14. Creating thumbnails with RMagick4J
	5.8.2.2. ImageVoodoo
	Example 5-15. Creating thumbnails with ImageVoodoo
	Example 5-16. ImageScience example
	Example 5-17. ImageVoodoo extended features

	5.8.3. Discussion
	Example 5-18. Java 2D API thumbnail generation

	5.8.4. See Also

	5.9. Creating SWT Applications
	5.9.1. Problem
	5.9.2. Solution
	Example 5-19. Simple JRuby SWT application

	5.9.3. Discussion
	Example 5-20. Writing an SWT application with Glimmer

	5.9.4. See Also

	5.10. Accessing the Native Desktop
	5.10.1. Problem
	5.10.2. Solution
	Example 5-21. Java Desktop API

	5.11. Accessing the System Tray
	5.11.1. Problem
	5.11.2. Solution
	5.11.2.1. Swing
	Example 5-22. A Java system tray application
	5.11.2.2. SWT
	Example 5-23. SWT system tray application

	5.11.3. See Also

	5.12. Swing Development with JRuby Domain-Specific Languages
	5.12.1. Problem
	5.12.2. Solution
	5.12.2.1. Swiby
	Example 5-24. Simple Swiby application
	Example 5-25. Defining Swiby styles
	5.12.2.2. Cheri::Swing
	Example 5-26. Simple Cheri::Swing application
	5.12.2.3. Profligacy
	Example 5-27. Profligacy search demo
	Example 5-28. Profligacy LEL demo
	Figure 5-1. LEL Search Demo user interface

	5.12.3. See Also

	5.13. Using the Monkeybars Framework for Swing Development
	5.13.1. Problem
	5.13.2. Solution
	Example 5-29. Java GUI class for use with Monkeybars
	Example 5-30. Monkeybars model file
	Example 5-31. Monkeybars view class
	Example 5-32. Monkeybars controller class
	Example 5-33. Monkeybars main execution file

	5.13.3. Discussion
	Example 5-34. UI component defined in JRuby
	Example 5-35. Monkeybars view class that uses a JRuby UI component

	5.13.4. See Also

	5.14. Creating Qt Applications with JRuby
	5.14.1. Problem
	5.14.2. Solution
	Example 5-36. Qt::JRuby application

	5.14.3. Discussion
	Example 5-37. Qt::JRuby experimental DSL

	5.14.4. See Also

	Chapter 6. Build Tools
	6.1. Introduction
	6.2. Adding Ruby Scripting to Ant Builds
	6.2.1. Problem
	6.2.2. Solution
	Example 6-1. Hello World from JRuby inside Ant

	6.2.3. Discussion
	Example 6-2. Defining JRuby dependencies inside the Ant file
	Example 6-3. Calling an Ant target from Ruby

	6.3. Using Ruby in Ant Conditions
	6.3.1. Problem
	6.3.2. Solution
	Example 6-4. Using scriptcondition

	6.3.3. Discussion
	Example 6-5. Combining scriptcondition with other Ant conditions

	6.4. Writing an Ant Task in Ruby
	6.4.1. Problem
	6.4.2. Solution
	Example 6-6. Using scriptdef to define a new Ant task

	6.5. Adding Ruby Scripting to Maven Builds
	6.5.1. Problem
	6.5.2. Solution
	Example 6-7. Using the JRuby Maven plugin

	6.5.3. Discussion
	6.5.4. See Also

	6.6. Writing a Maven Plugin with JRuby
	6.6.1. Problem
	6.6.2. Solution
	Example 6-8. Maven pom.xml file for a JRuby-based Maven plugin
	Example 6-9. Maven plugin written in Ruby

	6.6.3. Discussion
	6.6.4. See Also

	6.7. Building Java Projects with Raven
	6.7.1. Problem
	6.7.2. Solution
	Example 6-10. Simple Raven build script
	Example 6-11. Changing the default source directory

	6.7.3. Discussion
	Example 6-12. Raven build with Rake tasks

	6.7.4. See Also

	6.8. Referencing Libraries with Raven
	6.8.1. Problem
	6.8.2. Solution
	Example 6-13. Rakefile with dependencies

	6.8.3. Discussion

	6.9. Hosting a Private Raven Repository
	6.9.1. Problem
	6.9.2. Solution
	6.9.3. Discussion

	6.10. Running JUnit Tests with Raven
	6.10.1. Problem
	6.10.2. Solution
	Example 6-14. Unit testing with Raven

	6.10.3. See Also

	6.11. Building Java Projects with Buildr
	6.11.1. Problem
	6.11.2. Solution
	Example 6-15. Minimal Buildr buildfile

	6.11.3. Discussion
	Example 6-16. Generated buildfile

	6.11.4. See Also

	6.12. Referencing Libraries with Buildr
	6.12.1. Problem
	6.12.2. Solution
	6.12.3. Discussion
	6.12.4. See Also

	6.13. Building with Rake Inside Hudson
	6.13.1. Problem
	6.13.2. Solution
	Figure 6-1. Rake build step in Hudson job configuration

	6.13.3. Discussion
	Figure 6-2. Rake plugin entry in the Plugin Manager
	Figure 6-3. Multiple Ruby runtimes in Hudson

	6.13.4. See Also

	6.14. Adding Ruby Script to a Hudson Job
	6.14.1. Problem
	6.14.2. Solution
	Figure 6-4. Using the Hudson Ruby plugin

	6.14.3. Discussion
	6.14.4. See Also

	Chapter 7. Testing
	7.1. Introduction
	7.2. Unit Testing Java Code with Test/Unit
	7.2.1. Problem
	7.2.2. Solution
	Example 7-1. Simple Test/Unit

	7.2.3. Discussion
	Example 7-2. Test/Unit class with setup method

	7.2.4. See Also

	7.3. Unit Testing Java Code with dust
	7.3.1. Problem
	7.3.2. Solution
	Example 7-3. Unit testing with dust

	7.3.3. Discussion
	7.3.4. See Also

	7.4. Unit Testing Java Code with Expectations
	7.4.1. Problem
	7.4.2. Solution
	Example 7-4. Unit testing with Expectations

	7.4.3. Discussion
	7.4.4. See Also

	7.5. Testing Java Code with RSpec
	7.5.1. Problem
	7.5.2. Solution
	7.5.2.1. Spec framework
	Example 7-5. RSpec Spec file for java.util.HashSet
	7.5.2.2. Story framework
	Example 7-6. Story about java.util.ArrayList
	Example 7-7. Steps for java.util.ArrayList story

	7.5.3. Discussion
	Figure 7-1. Positive RSpec HTML output

	7.5.4. See Also
	Figure 7-2. Failed RSpec HTML output

	7.6. Creating Mock Objects with Mocha
	7.6.1. Problem
	7.6.2. Solution
	Example 7-8. Unit test with dust and Mocha
	Example 7-9. Expecting a specific parameter

	7.6.3. Discussion
	Example 7-10. Mocking a concrete class with preserved methods

	7.6.4. See Also

	7.7. Modifying the JtestR Classpath
	7.7.1. Problem
	7.7.2. Solution
	7.7.3. Discussion

	7.8. Grouping Tests for JtestR
	7.8.1. Problem
	7.8.2. Solution
	7.8.3. Discussion

	7.9. Using the JtestR Command-Line Options
	7.9.1. Problem
	7.9.2. Solution
	7.9.3. See Also

	7.10. Running JtestR with Ant
	7.10.1. Problem
	7.10.2. Solution
	7.10.3. Discussion
	7.10.4. See Also

	7.11. Running JtestR with Maven
	7.11.1. Problem
	7.11.2. Solution
	7.11.3. Discussion
	7.11.4. See Also

	7.12. Improving JtestR Performance
	7.12.1. Problem
	7.12.2. Solution
	7.12.3. Discussion
	7.12.4. See Also

	Chapter 8. The JRuby Community
	8.1. Introduction
	8.2. Building JRuby from Source
	8.2.1. Problem
	8.2.2. Solution
	8.2.3. Discussion
	8.2.4. See Also

	8.3. Submitting an Issue Report for JRuby
	8.3.1. Problem
	8.3.2. Solution
	Figure 8-1. JIRA Create Issue dialog

	8.3.3. Discussion
	Figure 8-2. Testcase and Patch form fields

	8.3.4. See Also

	8.4. Using the JRuby Mailing Lists
	8.4.1. Problem
	8.4.2. Solution
	8.4.3. Discussion

	Appendix. Colophon

