

JRuby Cookbook, 1st Edition
by Justin Edelson; Henry Liu

Publisher: O'Reilly Media, Inc.

Pub Date: November 18, 2008
Print ISBN-13: 978-0-596-51980-3

Pages: 250

Overview

If you're interested in JRuby, you probably don't need a turorial on Ruby,
Rails, or Java -- you just need to know how to get things done. This
Cookbook offers practical solutions for using the Java implementation of
the Ruby language, with targeted recipes for deploying Rails web
applications on Java servers, integrating JRuby code with Java
technologies, developing JRuby desktop applications with Java toolkits,
and more. Using numerous reusable code samples, JRuby
Cookbook shows you how to:

• Install and update JRuby on Windows, Mac OS X, and Linux, and
IDEs such as NetBeans and Eclipse

• Package and deploy Rails apps on Java Servlet containers and Java
EE application servers, including JBoss, Tomcat, and GlassFish

• Integrate Ruby and Rails applications with popular Java EE
technologies such as JMS, JMX, JPA, Spring, and Hibernate

• Develop desktop and client applications with cross-platform Java UI
technologies and toolkits such as Swing, SWT, and Java 2D

• Maximize the flexibility of your testing and build environment, using
both existing Java-based tools such as Ant and Maven and newer
Ruby-based tools such as Rake, Raven, and Buildr

The JRuby interpreter combines Ruby's simplicity and ease of use with
Java's extensive libraries and technologies, a potent blend that opens new
possibilities for Ruby, Rails, and Java. This Cookbook helps you take full
advantage of JRuby's potential. "The JRuby Cookbook is an excellent book
for any polyglot who is trying to bridge the gap between Java and Ruby.
It provides solutions to specific problems developers face in both their
development and testing environments, along with the applications
they're building." -- Bob McWhirter, Research & Prototyping, Red Hat
Middleware

Editorial Reviews
Product Description
If you're interested in JRuby, you probably don't need a turorial on Ruby,
Rails, or Java -- you just need to know how to get things done. This
Cookbook offers practical solutions for using the Java implementation of the
Ruby language, with targeted recipes for deploying Rails web applications on
Java servers, integrating JRuby code with Java technologies, developing
JRuby desktop applications with Java toolkits, and more. Using numerous
reusable code samples, JRuby Cookbook shows you how to: Install and
update JRuby on Windows, Mac OS X, and Linux, and IDEs such as NetBeans
and Eclipse Package and deploy Rails apps on Java Servlet containers and
Java EE application servers, including JBoss, Tomcat, and GlassFish Integrate
Ruby and Rails applications with popular Java EE technologies such as JMS,
JMX, JPA, Spring, and Hibernate Develop desktop and client applications with
cross-platform Java UI technologies and toolkits such as Swing, SWT, and
Java 2D Maximize the flexibility of your testing and build environment, using
both existing Java-based tools such as Ant and Maven and newer Ruby-based
tools such as Rake, Raven, and Buildr

The JRuby interpreter combines Ruby's simplicity and ease of use with Java's
extensive libraries and technologies, a potent blend that opens new
possibilities for Ruby, Rails, and Java. This Cookbook helps you take full
advantage of JRuby's potential. "The JRuby Cookbook is an excellent book for
any polyglot who is trying to bridge the gap between Java and Ruby. It
provides solutions to specific problems developers face in both their
development and testing environments, along with the applications they're
building." -- Bob McWhirter, Research &Prototyping, Red Hat Middleware

Copyright

Copyright © 2009, Justin Edelson and Henry Liu. All rights reserved.

Printed in the United States of America.

Published by , , , .

O'Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Sarah Schneider

Editor: Colleen Gorman

O'Reilly and the O'Reilly logo are registered trademarks of O'Reilly Media,
Inc. JRuby Cookbook, the image of an African civet, and related trade
dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
the publisher and authors assume no responsibility for errors or
omissions, or for damages resulting from the use of the information
contained herein.

Preface

JRuby is just Ruby taking advantage of Java's VM; tak⁠i⁠n⁠g the suck
out of Java and putting some extra awe⁠s⁠o⁠m⁠e into Ruby.

—Charles Nutter, JRuby project lead
Twitter, August 7, 2008

And with that quote, Charles Nutter summarizes the two forces that have
recently brought attention to the JRuby project: the recognition that Java
provides a powerful platform that can be used by languages other than
Java, and the increase in interest in the Ruby programming language. In
the recipes ahead, we will explore a wide variety of usage scenarios for
JRuby. In Charles's terms, some recipes are about taking the suck out of
Java, some are about putting some extra awesome into Ruby, and some
are about both.

P.1. Audience

To fully leverage JRuby, you must be able to move freely between the
Java and Ruby domains. In writing the JRuby Cookbook, we had in mind a
reader with some understanding of both languages, possibly with a better
understanding of one or the other. As a result, you won't find a lot of
basic introductory material, save for the first chapter where we illustrate
the areas where Ruby and Java are similar as well as where they differ.

Our overall approach is that the purpose of the recipes in this book is not
to educate you on some preexisting Java or Ruby capability, but instead
to explain how to use JRuby within the context of, or as an enhancement
to, these existing capabilities. For example, the recipes in the JRuby on
Rails chapter are written for someone who has already created a
(working) Rails application.

P.2. Organization

Chapter 1

This chapter starts off with a brief introduction to JRuby before
stepping through a number of basic usages of JRuby, including
how to use the RubyGems package management system and
how to interact with Java code from Ruby code. The package
concludes with a number of recipes about setting up various

integrated development environments (IDEs) for working with
JRuby.

Chapter 2

This chapter is focused on a variety of scenarios for deploying
Ruby on Rails applications using JRuby.

Chapter 3

This chapter starts with several recipes about invoking Ruby
code from Java code and then continues into recipes describing
the usage of popular Java libraries such as Java Native Access (
JNA) and Jakarta Commons Logging from Ruby.

Chapter 4

The recipes in this chapter are all about using JRuby with
enterprise Java frameworks such as JMS, JNDI, EJB, Spring, and
Hibernate.

Chapter 5

This chapter describes a number of JRuby-based frameworks
that facilitate the creation of user interfaces. It also includes
recipes about image manipulation, applets, and desktop
integration.

Chapter 6

The recipes in this chapter are focused on using JRuby to
enhance the build process of your Java project. Ant and Maven,
the two most popular Java-based build tools, both have several
different ways that JRuby can be used. There are also recipes
about the JRuby-specific build tools Raven and Buildr.

Chapter 7

The focus of this chapter is on JtestR, a package that includes
JRuby and a variety of popular Ruby testing tools. Through the
recipes in this chapter, you will learn how to write Ruby-based
tests of Java code.

Chapter 8

This final chapter includes a few recipes about effectively
participating in the JRuby community.

P.3. Conventions Used in This Book

This book uses the following typographic conventions:

Italic

Used for example URLs, names of directories and files, options,
and occasionally for emphasis.

Constant width

Used for program listings. Also used within paragraphs to refer
to program elements such as namespaces, classes, and method
names.

Constant width italic

Indicates text that should be replaced with user-supplied values.

NOTE

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

P.4. Using Code Examples
This book is here to help you get your job done. In general, you may use
the code in this book in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant
portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O'Reilly books does require
permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of
example code from this book into your product's
documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: "JRuby
Cookbook, by Justin Edelson and Henry Liu. Copyright 2009 Justin
Edelson and Henry Liu, 978-0-596-51980-3."

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us
at permissions@oreilly.com.

P.5. Safari® Books Online

NOTE

When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library
that lets you easily search thousands of top tech books, cut and paste
code samples, download chapters, and find quick answers when you need
the most accurate, current information. Try it for free
at http://safari.oreilly.com.

P.6. Comments and Questions

We at O'Reilly have tested and verified the information in this book to the
best of our ability, but mistakes and oversights do occur. Please let us
know about errors you may find, as well as your suggestions for future
editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a website for this book where examples, errata, and any plans
for future editions are listed. You can access this site at:

http://www.oreilly.com/catalog/9780596519803

For more information about this book and others, see the O'Reilly
website:

http://www.oreilly.com

P.7. Acknowledgments

Thanks to the O'Reilly staff, especially our editor Mike Loukides and
copyeditor Colleen Gorman. Thanks to Steven Shingler for his contribution
to Chapter 4. And thanks to all who reviewed this book including Juan
Pablo Tarquino, John Purcell, and David Koontz.

This book simply would not and could not exist without the tireless efforts
of the whole JRuby project team, including Charles Nutter, Thomas
Enebo, Nick Sieger, and Ola Bini. Thanks also to Sun and ThoughtWorks
for their ongoing support of JRuby. The JRuby project is hosted by The
Codehaus; thanks as well to Bob McWhirter for his work there.

We both would like to thank Nick Rockwell for his ongoing encouragement
and enthusiasm.

P.7.1. Justin Edelson

This book wouldn't have happened without the love and support of my
wonderful wife, Elizabeth. Special thanks to my sons: Owen, who typed
his name all by himself, and Benjamin, who can't yet.

Thanks to my team at MTV Networks: Michael Benoit, Keith Griffin,
Ramesh Nuthalapati, Ilya Reznikov, Chris Sindel, Jeff Yemin, and Jun
Zhou, for all their hard work. Thanks also to Warren Habib for his
support.

P.7.2. Henry Liu

Thanks to my friend Jon Baer for inviting me to my first Ruby meeting
and being a great collaborator throughout the years. I'm grateful to
Francis Hwang, Matt Pelletier, Sebastian Delmont, Trotter Cashion, and all
the members of the NYC Ruby group. They taught me Ruby and Rails by
answering all my newbie questions, and it was their passion and
enthusiasm for the technology that motivated me to dig deeper. Thanks
to all my colleagues at MTV Networks and specifically Mark Ache, Luke
Murphy, and Steve Azueta for their continued support. Most of all, thanks
to my family and my partner, Naomi; without her, none of this would be
possible.

Chapter 1. Getting Started

Introduction

Installing JRuby

Managing Packages with RubyGems

Using Both Ruby and JRuby

Sharing RubyGems

Referencing Java Classes from Ruby

Converting a Ruby Array into a Java Array

Adding JAR Files to the Classpath

Extending a Java Class in Ruby

Implementing a Java Interface in Ruby

Opening Java Classes with JRuby

Setting Up Eclipse for JRuby Development

Setting Up NetBeans for JRuby Development

Platform Detection in a JRuby Application

1.1. Introduction

JRuby is an open source implementation of the Ruby programming
language for the Java Virtual Machine (JVM). It allows Ruby applications
to be run within a Java Virtual Machine and interface with libraries written
in either Java or Ruby. Although the JRuby project was initiated in 2001,
interest in JRuby has grown significantly over the last few years,
reflecting an overall growth in interest in Ruby sparked by the success of
the Ruby on Rails framework. Sun has contributed to JRuby's success by
employing members of the core development team and providing support
for JRuby in the NetBeans development environment, among other
efforts. The website for the JRuby project is
currently http://www.jruby.org.

1.1.1. Ruby

Ruby is a dynamic object-oriented programming language created by
Yukihiro Matsumoto, known by the nickname Matz, in the mid-1990s.
Ruby follows a style of versioning similar to the Linux kernel, where an
even minor version number indicates a stable release and an odd minor
version number indicates a development release. As a result, there are
two current versions of Ruby: 1.8.6, released in March 2007, is the
current stable release, and 1.9.0, released in December 2007, is the
current development release. The standard Ruby interpreter[1] is written in
C. There are several alternate implementations of the interpreter,
including JRuby, IronRuby (for Microsoft's .NET framework), and Rubinius.
Ruby does not have a formal language specification; however, one is
being developed through the wiki at http://spec.ruby-doc.org.

[1] Usually referred to as Matz's Ruby Interpreter (MRI).

As an object-orientated language, many of the underlying concepts of
Ruby will be familiar to Java developers, even if the syntax is not. The
biggest exception to this is Ruby's support for blocks. In Ruby, a block is
a grouping of code that gets passed to a method call. The receiving
method can invoke the block any number of times and can pass
parameters to the block. Support for a similar type of element, a closure,
is being contemplated for inclusion in Java 7; there are several competing
proposals and it is unclear which proposal, if any, will be
adopted. Example 1-1contains a simple Ruby class demonstrating the two
ways of defining a block in Ruby. The former syntax, using braces, is
typically used to create a block for a single statement. The latter syntax,
using the do and end keywords, is typically used for multistatement
blocks.

Example 1-1. Introduction to Ruby blocks
class HelloWorldSayer
 def hello_world
 yield "Hello"
 yield "World"
 yield "from Ruby"
 end
end

sayer = HelloWorldSayer.new
sayer.hello_world { |message| puts message.swapcase }

or

sayer.hello_world do |it|
 puts it.swapcase
end

NOTE

The Ruby yield function transfers control to the block argument.

This isn't to suggest that blocks are the only substantial difference
between Ruby and Java, but it is certainly one of the most significant, as
block usage is so prevalent within typical Ruby code. For example,
outputting the list of numbers between 1 and 10 in Java would look
something like the code in Example 1-2. The corresponding Ruby code is
shown in Example 1-3.

Example 1-2. Loop in Java
for (int i = 1; i <= 10; i++) {
 System.out.println(i);
}

Example 1-3. Loop in Ruby
1.upto(10) { |x| puts x }

Ruby has an active developer community both online and in local
developer groups. The Ruby language website, http://www.ruby-lang.org,
has more information about these user groups. A wide array of books
about Ruby have been published, perhaps most famously Programming
Ruby: The Pragmatic Programmers's Guide (Pragmatic Bookshelf) by
Dave Thomas, Chad Fowler, and Andy Hunt, known as the "pickaxe book"

because of its cover, and The Ruby Programming Language by David
Flanagan and Yukihiro Matsumoto (O'Reilly).

1.1.2. JRuby

JRuby began its life as a direct port of the C-based interpreter for Ruby
1.6 written by a programmer named Jan Arne Petersen in 2001. For the
next few years, it was an interesting project, but had serious performance
limitations. Following the release of Ruby 1.8 in 2003 and then the
release of the Ruby on Rails web framework in 2004, a significant amount
of effort has been put into developing JRuby, especially in the areas of
compatibility and performance. In September 2006, Sun Microsystems
effectively endorsed JRuby when it hired two of the lead developers,
Charles Nutter and Thomas Enebo, to work on JRuby full-time. Since
then, a third lead developer, Nick Sieger, has become a Sun employee.[2]

[2] A fourth lead developer, Ola Bini, works for the influential IT consulting company
ThoughtWorks.

For Sun, JRuby represents an opportunity to expand the prevalence of the
Java Virtual Machine. Although the JVM was originally tied very closely to
the Java language, the emergence of projects like JRuby, Jython (a Java
implementation of Python), Groovy (a scripting language inspired by
Ruby), and Scala (a functional/object-oriented programming language)
have proved that the JVM can host a wide variety of languages. This trend
culminated with the development of Java Specification Request (JSR) 223,
Scripting for the Java Platform. JSR 223 defines a standard API
(Application Programming Interface) for scripting languages to integrate
with the JVM. Implementations of the JSR 223 API are available for 25
different languages fromhttps://scripting.dev.java.net. This API will be
discussed further in Chapter 3.

For users, JRuby represents a different opportunity: to take advantage of
the power of a dynamic language such as Ruby while still being able to
leverage existing Java libraries and application servers. This area will be
explored in the first two chapters.

With the release of JRuby 1.1 in April 2008, JRuby has closed the
performance gap with the C Ruby interpreter and is in many cases faster.
In terms of compatibility, the JRuby project strives to duplicate the
behavior of the standard Ruby interpreter whenever possible, even at the
expense of consistency with Java. Most of the core Ruby classes are
included, as is much of the standard Ruby library, the RubyGems package
management system, RDoc documentation support, and the Rake build
system. Despite these efforts at compatibility, there are some areas
where JRuby deviates from behavior exhibited by the C Ruby interpreter.

The most visible example of this is how JRuby handles threads. In this
case, however, JRuby is actually ahead of the standard Ruby interpreter
in that Ruby 2.0 is expected to have a similar threading model to what
JRuby already supports.

This chapter goes through the JRuby installation process, some core
Java/Ruby integration information, and finally a variety of IDE integration
options.

1.2. Installing JRuby

1.2.1. Problem

You want to install JRuby.

1.2.2. Solution

Download and extract the latest binary release from the JRuby
website, http://www.jruby.org. Add the bin directory to
the PATH environment variable.

1.2.3. Discussion

1.2.3.1. Windows

The JRuby website makes binary releases available in both ZIP and TGZ
file formats. Since Windows XP, Windows operating system software has
included support for extracting ZIP files. Commercial and open source
software packages are available that include support for TGZ files, such
as WinZip (http://www.winzip.com), 7-Zip (http://www.7-zip.org), and
IZArc (http://www.izarc.com).

It is not necessary to install JRuby in any particular location on your
computer. My preference is to install Java libraries and executables in
subdirectories of C:\java. The results of extracting the binary for the
latest release at the time of this writing, 1.1, can be seen in Figure 1-1.

Figure 1-1. Extracted JRuby binary build

After extraction, JRuby is ready to be used. The simplest way to see
JRuby in action is by running jirb, JRuby's version of Interactive Ruby
(irb). Like irb, jirb allows you to execute Ruby statements and
immediately see the results of each statement. JRuby includes both
command-line and GUI versions of jirb in the bin directory.
The command-line version, seen in Figure 1-2, can be run by
executing bin\jirb.bat; the GUI version, seen in Figure 1-3, can be run by
executing bin\jirb_swing.bat. In both figures, some trivial Ruby code has
been executed. You can see that both the output of the puts method
(Hello World) and its result (nil) have been output.

Figure 1-2. Command-line jirb

Figure 1-3. jirb GUI

If you launch either jirb.bat or jirb_swing.bat from
Windows Explorer and all you see is a black window
appear and then disappear quickly, the likely cause is
that you do not have the JAVA_HOME environment
variable set, or the value of this environment variable is
incorrect. To set environment variables in Windows, use
the System control panel's Advanced
tab. JAVA_HOME should point to the directory in which
you have Java installed.

You can also test JRuby from the command line by using the -
e (evaluate) option:

C:\java\jruby-1.1\bin\jruby -e "puts 'Hello World'"

To avoid having to retype the full path to JRuby's bin directory, add it to
the PATH environment variable by opening the System control panel and
clicking on the Advanced tab. On the Advanced tab, click the Environment
Variables button. This will bring up the Environment Variables dialog,
seen in Figure 1-4. Using the New and Edit buttons for System variables,
add a JRUBY_HOMEenvironment variable and also prepend the
value %JRUBY_HOME%\bin to the PATH environment variable. You could
also simply prepend the full path to the bin directory to PATH, but using a
separate environment variable makes upgrading a bit easier.

Figure 1-4. Windows Environment Variables

Once you have configured the environment variables, click OK. These
changes will only be reflected in newly opened windows (something to
keep in mind if you have any command-line windows open). After adding
the bin directory to your PATH, you can then simply run the test shown
previously by executing:

jruby -e "puts 'Hello World'"

1.2.3.2. Linux and Mac OS X

The JRuby website makes binary releases available in both ZIP and TGZ
file formats. Although most Linux distributions and OS X include utilities
for extracting both types of files, TGZ files are preferable because files
extracted from them include permission settings, something that is not
the case with ZIP files.

NOTE

The JPackage Project at http://www.jpackage.org has a release available
in RPM format. At the time of this writing, JPackage did not have the
latest JRuby version available, but that may not be the case when
you're reading this.

If you have root privileges on the system where you want JRuby installed,
you should install JRuby based on whatever standards already exist. This
could mean installing JRuby in /usr/local/jruby,/usr/share/jruby,
or /opt/jruby, among other options. Based on OS X conventions, Mac
users should install in /opt/local/jruby or /usr/local/jruby. If you do not
have root privileges, then you likely need to install it inside your home
directory, such as ~/jruby. By default, the JRuby releases extract to a
directory containing the version number, so we'll simply create a symbolic
link between~/jruby and ~/jruby-1.1. This will facilitate upgrades later:

$ cd ~
$ tar -xzf jruby-bin-1.1.tar.gz
$ ln -s jruby-1.1 jruby

Set JRUBY_HOME to the installation directory and add JRuby's bin directory
to the PATH environment variable; add lines to the ~/.profile similar to
those in Example 1-4.

Example 1-4. Example .profile file that adds JRuby to the PATH
environment variable
export JRUBY_HOME=~/jruby
export PATH=$JRUBY_HOME/bin:$PATH

Once the bin directory has been added to your PATH, you can test the
install by running a simple Ruby script:

$ jruby -e "puts 'Hello World'"
Hello World

You must add JRuby's bin directory to your PATH in order
to use any of the command-line utilities included with
JRuby, including jirb.

1.2.4. See Also

• Section 8.2"
• Section 1.4"

1.3. Managing Packages with RubyGems

1.3.1. Problem

You want to install Ruby on Rails or other Ruby packages for use with
JRuby.

1.3.2. Solution

Use the RubyGems support built into JRuby. Once JRuby has been
installed, you can immediately start using RubyGems to manage Ruby
packages by running the gem script included in JRuby'sbin directory. To
install a package, run:

$ gem install packagename

For example, to install the Ruby on Rails web framework, use:

$ gem install rails

1.3.3. Discussion

RubyGems is the standard package management and distribution system
for Ruby packages. There are thousands of packages, referred to
as gems, available through the default RubyGems repository
at http://gems.rubyforge.org. Although some gems are specific to the C
Ruby implementation or JRuby, most are compatible with any Ruby
implementation.

Common RubyGems commands
include install, query, update, uninstall, and rdoc. The full list can be
output by using the help command:

$ gem help commands

GEM commands are:

 build Build a gem from a gemspec
 cert Manage RubyGems certificates and signing
settings
 check Check installed gems
 cleanup Clean up old versions of installed gems in
the local
 repository
 contents Display the contents of the installed gems
 dependency Show the dependencies of an installed gem
 environment Display information about the RubyGems
environment
 fetch Download a gem and place it in the current
directory
 generate_index Generates the index files for a gem server
directory
 help Provide help on the 'gem' command
 install Install a gem into the local repository
 list Display all gems whose name starts with
STRING
 lock Generate a lockdown list of gems
 mirror Mirror a gem repository
 outdated Display all gems that need updates
 pristine Restores installed gems to pristine
condition from files
 located in the gem cache
 query Query gem information in local or remote
repositories
 rdoc Generates RDoc for pre-installed gems
 search Display all gems whose name contains STRING
 server Documentation and gem repository HTTP
server
 sources Manage the sources and cache file RubyGems
uses to search
 for gems
 specification Display gem specification (in yaml)
 uninstall Uninstall gems from the local repository
 unpack Unpack an installed gem to the current
directory
 update Update the named gems (or all installed
gems) in the local
 repository
 which Find the location of a library

For help on a particular command, use 'gem help COMMAND'.

Commands may be abbreviated, so long as they are unambiguous.
e.g., 'gem i rake' is short for 'gem install rake'.

1.3.4. See Also

• The RubyGems Manuals, http://rubygems.org
• Section 1.4"

1.4. Using Both Ruby and JRuby

1.4.1. Problem

You have Ruby and JRuby installed on the same computer and want to
ensure that a Ruby script is processed by the correct interpreter.

1.4.2. Solution

Use the -S command-line argument for the ruby and jruby executables.
For example, RubyGems is traditionally invoked with a command like:

gem install rails

Instead, use:

$ jruby –S gem install rails

or:

$ ruby –S gem install rails

1.4.3. Discussion

Popular Ruby packages such as Rake, Ruby on Rails, and RubyGems
include their own executable Ruby scripts that most guides, both online
and print, instruct you to invoke directly. Whether these scripts run with
Ruby or JRuby depends on how you've configured the PATH environment
variable, which platform you use, and what package is involved. Because
there are so many variables, this recipe prescribes using a single,
consistent method, passing the script name through the -S command-line
argument to either the ruby or jruby executables.

The -S command-line option instructs Ruby and JRuby to load a script file
from the PATH. JRuby includes its own copies of the Rake and RubyGems
scripts in bin/rake and bin/gem, respectively, but they are verbatim
copies of the original scripts. As a result, it doesn't matter which version
of the script you execute, only the interpreter with which you execute it.

This advice is particularly significant in the context of the RubyGems
script, gem. To create a new Rails application, you could run either:

$ ruby –S rails sampleapp

or:

$ jruby –S rails sampleapp

and see the same result. However, running:

$ ruby –S gem install rails

and:

$ jruby –S gem install rails

will install the Rails gem in two different locations. You can see this by
passing environment to the gem script:

$ ruby -S gem environment

RubyGems Environment:
 - RUBYGEMS VERSION: 1.0.1 (1.0.1)
 - RUBY VERSION: 1.8.5 (2007-09-24 patchlevel 114) [i386-linux]
 - INSTALLATION DIRECTORY: /usr/lib/ruby/gems/1.8
 - RUBY EXECUTABLE: /usr/bin/ruby
 - RUBYGEMS PLATFORMS:
 - ruby
 - x86-linux
 - GEM PATHS:
 - /usr/lib/ruby/gems/1.8
 - GEM CONFIGURATION:
 - :update_sources => true
 - :verbose => true
 - :benchmark => false
 - :backtrace => false
 - :bulk_threshold => 1000
 - REMOTE SOURCES:
 - http://gems.rubyforge.org
$ jruby -S gem environment
RubyGems Environment:
 - RUBYGEMS VERSION: 1.0.1 (1.0.1)
 - RUBY VERSION: 1.8.6 (2008-01-07 patchlevel 5512) [java]
 - INSTALLATION DIRECTORY: /home/justin/jruby-
1.1/lib/ruby/gems/1.8
 - RUBY EXECUTABLE: /home/justin/jruby-1.1/bin/jruby
 - RUBYGEMS PLATFORMS:
 - ruby
 - universal-java-1.6
 - GEM PATHS:
 - /home/justin/jruby-1.1/lib/ruby/gems/1.8
 - GEM CONFIGURATION:
 - :update_sources => true
 - :verbose => true
 - :benchmark => false
 - :backtrace => false
 - :bulk_threshold => 1000
 - REMOTE SOURCES:
 - http://gems.rubyforge.org

1.4.4. See Also

• Section 1.3"

1.5. Sharing RubyGems

1.5.1. Problem

You already have a number of RubyGems installed and want to use those
gems from JRuby without reinstalling the gems.

1.5.2. Solution

Set the GEM_HOME environment variable to your existing RubyGems
installation location. This value can be seen in the output of gem
environment, where it is referred to as the installation directory:

$ ruby -S gem environment | grep -i 'installation directory'
- INSTALLATION DIRECTORY: /usr/lib/ruby/gems/1.8
$ export GEM_HOME=/usr/lib/ruby/gems/1.8
$ jruby -S gem environment | grep -i 'installation directory'
- INSTALLATION DIRECTORY: /usr/lib/ruby/gems/1.8

1.5.3. Discussion

Whereas some RubyGems are implemented entirely in Ruby, many are
implemented in a combination of Ruby and C (or, in a growing number of
cases, Ruby and Java). Pure-Ruby gems can be installed using either
JRuby or C Ruby. However, those implemented in a mixture can only be
installed using a compatible interpreter. The list of supported platforms
for each interpreter can be seen in the output of gem
e⁠n⁠v⁠i⁠r⁠o⁠n⁠ment. Because the RubyGems runtime knows this list of
supported platforms, it is possible to mix gems supporting different
platforms in the same directory; the runtime will select the appropriate
libraries.

1.6. Referencing Java Classes from Ruby

1.6.1. Problem

You want to write Ruby code that uses one or more Java classes.

1.6.2. Solution

First, you need to tell JRuby that you will be referencing Java classes from
your Ruby code. Do this by including an include declaration at the top of
your Ruby file:

include Java

The syntax for referencing a specific Java class depends on the package in
which the class resides. For packages starting with java, javax, org,
and com, you can simply reference the fully qualified class name or use
an import statement, as shown in Example 1-5.

Example 1-5. Creating a Java TreeMap from Ruby
using the fully-qualified class name
map = java.util.TreeMap.new

using an import statement
import java.util.TreeMap
map = TreeMap.new

For classes that reside in a package that does not begin
with java, javax, org, or com, as well as classes in the default package,
you need to use the include_class function, as in Example 1-6.

Example 1-6. Referencing a Java class with include_class
include_class
'EDU.oswego.cs.dl.util.concurrent.ConcurrentHashMap'

map = ConcurrentHashMap.new

NOTE

The include_class function can also handle classes in packages starting
with java, javax, org, and com if you don't want to switch back and forth.

The include_class function can also be used to create aliases in cases
where a Java class name conflicts with a Ruby class name. To do this,
pass a block to the function. Example 1-7 aliases the Java String class
as JString so that it does not conflict with Ruby's String class.

Example 1-7. Creating an alias to avoid class name conflicts
include Java

include_class 'java.lang.String' do |package,name|
 "JString"
end

p JString.new("A quick brown fox").indexOf("brown")

You can pass multiple class names to the include_class as a list. In this
case, you could provide the appropriate alias using a case statement, as
seen in Example 1-8.

Example 1-8. Aliasing multiple classes with case
include_class ['java.lang.String','java.lang.Integer'] do
|package,name|
 case name
 when "String"
 "JString"
 when "Integer"
 "JInteger"
 end
end

An alternative to this aliasing technique is wrapping a Java package in a
Ruby module using the include_package function, as seen in Example 1-
9.

Example 1-9. Wrapping a Java package with a Ruby module
include Java

module JavaLang
 include_package 'java.lang'
end

p JavaLang::String.new("A quick brown fox").indexOf("brown")

1.6.3. Discussion

JRuby makes referencing Java classes relatively natural from the
perspective of a Java developer. For the most commonly used packages,
you can use import just as you would in Java code.

When calling methods on a Java class, JRuby handles some type
conversion for you—instances of basic Ruby classes such
as FixNum, Float, and String are converted to instances of the
corresponding Java classes when passed to Java objects. JRuby includes
implementations of the java.util.List and java.util.Map interfaces
for handling Ruby Array and Hash objects. RubyArray objects can also be
coerced into Java Array objects by calling the to_java method. Example
1-10 includes a combination of Java and Ruby code, which demonstrates
this functionality.

Example 1-10. Ruby to Java type conversion
package org.jrubycookbook.ch01;

import java.io.PrintWriter;
import java.io.StringWriter;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

import org.jruby.Ruby;
import org.jruby.javasupport.JavaEmbedUtils;

public class PrintJavaClass {

 // Output the class and interface list for a single object
 public String output(Object o) {
 String className = o.getClass().getName();
 List<Class> interfaces =
Arrays.asList(o.getClass().getInterfaces());

 return String.format("%s, implements %s\n", className,
interfaces);
 }

 // Output the class and interface list for each object in an
array
 public String output(Object[] objects) {
 PrintWriter writer = new PrintWriter(new StringWriter());
 for (Object o : objects) {
 String className = o.getClass().getName();
 List<Class> interfaces = Arrays
 .asList(o.getClass().getInterfaces());

 writer.printf("%s (inside array), implements %s\n",
className,
 interfaces);
 }
 return writer.toString();
 }

 public static void main(String[] args) {
 Ruby runtime =
JavaEmbedUtils.initialize(Collections.EMPTY_LIST);
 String script = "@printer =
org.jrubycookbook.ch01.PrintJavaClass.new\n"
 + "def output(o)\n"
 + "puts \"#{o.to_s} - #{@printer.output(o)}\"\n"
 + "end\n"
 + "output(1)\n"
 + "output(0.5)\n"

 + "output('string')\n"
 + "output(true)\n"
 + "output([4, 8, 15, 16, 23, 42])\n"
 + "output([4, 8, 15, 16, 23, 42].to_java)\n"
 + "output({ 'NY' => 'New York', 'MA' =>
'Massachusetts'})\n";

 runtime.evalScriptlet(script);
 JavaEmbedUtils.terminate(runtime);
 }
}

NOTE

See Section 3.2 for an explanation of the JavaEmbedUtils class used
in Example 1-10.

When executed, this class outputs:

1 - Class is java.lang.Long, implements [interface
java.lang.Comparable]
0.5 - Class is java.lang.Double, implements [interface
java.lang.Comparable]
string - Class is java.lang.String, implements [interface
java.io.Serializable,\
 interface java.lang.Comparable, interface
java.lang.CharSequence]
true - Class is java.lang.Boolean, implements [interface
java.io.Serializable,\
 interface java.lang.Comparable]
4815162342 - Class is org.jruby.RubyArray, implements [interface
java.util.List]
[Ljava.lang.Object;@8b058b - Received an array
In array: class is java.lang.Integer, implements [interface
java.lang.Comparable]
In array: class is java.lang.Integer, implements [interface
java.lang.Comparable]
In array: class is java.lang.Integer, implements [interface
java.lang.Comparable]
In array: class is java.lang.Integer, implements [interface
java.lang.Comparable]
In array: class is java.lang.Integer, implements [interface
java.lang.Comparable]
In array: class is java.lang.Integer, implements [interface
java.lang.Comparable]
NYNew YorkMAMassachusetts - Class is org.jruby.RubyHash,
implements\
 [interface java.util.Map]

JRuby provides access to public static methods and variables through
the :: operator. Example 1-11 shows how you would access the static
methods and variables of the Java Math class.

Example 1-11. Accessing static methods and variables
require 'java'

puts java.lang.Math::max(100,200)
puts java.lang.Math::PI

1.7. Converting a Ruby Array into a Java
Array

1.7.1. Problem

You need to pass a Ruby array to a method that accepts a Java array of a
specific type.

1.7.2. Solution

Call the Ruby array's to_java method with an argument specifying the
component type of the array. For example, creating an array
of javax.xml.transform.stream.StreamSource objects would be done
like this:

import javax.xml.transform.stream.StreamSource

cnn = StreamSource.new
"http://rss.cnn.com/rss/cnn_topstories.rss"
mtv = StreamSource.new
"http://www.mtv.com/rss/news/news_full.jhtml"

Call a transforming Java API. This method would have been
declared
with this signature:
public String transform(StreamSource[] sources)
p transformer.transform([cnn,mtv].to_java(StreamSource))

Primitives, as well as java.lang.String, have Ruby symbols assigned to
them. For example, to create an array of int primitives:

[1,2,3,4,5,6,7,8,9,10].to_java(:int)

1.7.3. Discussion

This JRuby feature is critical for accessing Java APIs. For example, calling
a method through Java Management Extensions (JMX) involves passing
two arrays to the invoke() method ofjavax.management.MBeanServer,
one of Object instances, storing the method parameters, and one
of String instances, storing the method signature. To call invoke() from
JRuby, you would do something like this:

brokerName =
ObjectName.new('org.apache.activemq:BrokerName=localhost,Type=Bro
ker')
params = ["MyQueue"].to_java()
signature = ["java.lang.String"].to_java(:string)
server.invoke(brokerName, 'addQueue', params, signature)

1.8. Adding JAR Files to the Classpath

1.8.1. Problem

You want to reference a Java class which is contained in a JAR file that
isn't already included in your classpath.

1.8.2. Solution

Call Ruby's require method with the path to the JAR file. This path can
be relative to the current working directory:

require 'lib/commons-logging-1.1.jar'

or an absolute path:

require '/opt/java/commons-logging/bin/commons-logging-1.1.jar'

If you are using Windows, this path can have either type of slash:

require 'c:\java\commons-logging-1.1\bin\commons-logging-1.1.jar'
or
require 'c:/java/commons-logging-1.1/bin/commons-logging-1.1.jar'

1.8.3. Discussion

Although this is an extremely useful feature of JRuby, it should be used
with caution, especially if you use absolute paths that are platform- and
installation-specific. Relative paths can seem like a better solution, but
are actually more limiting, as they are evaluated from the current working
directory, not the script's directory. Yet all is not lost.

An interesting aspect of this feature of JRuby is that the JAR file is added
to the classpath dynamically, while the application is running. This allows
you to use Ruby's string interpolation functionality to create absolute
paths. Example 1-12 includes a method that creates a path to a JAR file
in a local Maven repository.[3]

[3] This use of the Maven repository is naïve, as it assumes the JAR file is already in the local
repository. Buildr, a build system for Java written in Ruby, includes support for downloading
JAR files from remote Maven repositories. More information about Buildr can be found
in Chapter 6.

Example 1-12. Creating a JAR file path dynamically

Set the HOME environment variable if USERPROFILE is set
ENV['HOME'] = ENV['USERPROFILE'] if (ENV['USERPROFILE'])

def require_from_maven(group,artifact,version)
 maven_path = "#{group}/#{artifact}/#{version}/#{artifact}-
#{version}.jar"
 require "#{ENV['HOME']}/.m2/repository/#{maven_path}"
end

Application code could use require to include this script and then use
the require_from_maven method to reference a specific JAR file:

require 'require_from_maven'
require_from_maven "commons-logging", "commons-logging", "1.1"

1.9. Extending a Java Class in Ruby

1.9.1. Problem

To use a Java API, you need to create a Ruby class that subclasses a Java
class.

1.9.2. Solution

Use the standard Ruby superclassing operator < and specify the Java
class you want to subclass. Example 1-13 shows a Ruby class that
extends the Java Thread class and overrides the run()method.

Example 1-13. Subclassing a Java class in Ruby
include Java

class MyThread < java.lang.Thread
 def run
 puts 'hello world'
 end
end

MyThread.new.start

1.9.3. Discussion

The fact that the same syntax is used to extend both Java and Ruby
classes is an important design feature of JRuby, as it furthers the
seamless integration between the two languages.

One notable exception to this recipe is classes that use
Java 5 generics. Currently, these cannot be subclassed
with Ruby classes.

Abstract Java classes can also be extended by Ruby classes.
Examples Example 1-14 and Example 1-15 show an example of an
abstract Java class and a concrete Ruby class that extends the former.
The hello() method, declared abstract in the Java class, is implemented
in the Ruby class.

Example 1-14. An abstract Java class
package org.jrubycookbook.ch01;

public abstract class AbstractElement {
 public abstract void hello();

 public void sayHello(int count) {
 for (int i = 0; i < count; i++) {
 hello();
 }
 }
}

Example 1-15. Ruby class that subclasses an abstract Java
class
include Java

import org.jrubycookbook.ch01.AbstractElement

class RubyElement < AbstractElement
 def hello
 puts 'hello world'
 end
end

RubyElement.new.sayHello 5

1.10. Implementing a Java Interface in Ruby

1.10.1. Problem

To use a Java API, you need to create a Ruby class that implements a
Java interface.

1.10.2. Solution

Create your class with method names that match the names in the Java
interface. As of version 1.1, JRuby runtime supports the use of duck
typing for implementing Java interfaces. Duck typing, seen in many
dynamic languages, including Ruby, means that the type of an object is
determined based on the methods implemented by the object. Example
1-16 shows this technique in action as a new Java thread by passing
the constructor an object that implements

the java.lang.Runnable interface. The HelloT⁠h⁠read class contains a
zero-argument run method that corresponds to the method defined
in java.lang.Runnable. JRuby requires no additional type information in
the HelloT⁠h⁠read class to instantiate the Thread object.

Example 1-16. Ruby implementation of a Java interface
include Java

class HelloThread
 def run
 puts 'hello world'
 end
end

java.lang.Thread.new(HelloThread.new).start

1.10.3. Discussion

There are few situations when duck typing isn't sufficient and you'll need
to provide additional type information to the interpreter. One case is
when a duck-typed JRuby object is passed as an argument to an
overloaded Java method. Without additional Java type information, the
JRuby interpreter doesn't definitively know which method to execute. The
solution is to use Ruby'sinclude statement to assign an explicit Java
interface to a Ruby class. This provides the JRuby interpreter with enough
information about the object to execute the correct method. In Example
1-17, the HelloThread class is assigned the Runnable interface. As a
result, JRuby calls the desired exec() method and runnable is output to
the console.

Example 1-17. Declaring Java interfaces in JRuby
Balloon.java

public interface Balloon {
 void pop();
}

Bubble.java

public interface Bubble {
 void pop();
}

Child.java

public class Child{
 public void give(Bubble bubble){
 System.out.println("Thanks for the bubble.");
 bubble.pop();
 }
 public void give(Balloon balloon){
 System.out.println("Thanks for the balloon.");
 balloon.pop();
 }
}

main.rb

include Java

class MylarBalloon
 include Java::Balloon
 def pop
 puts 'Oh No!!!'
 end
end

child = Java::Child.new
child.give(MylarBalloon.new)

Because Ruby scripts implicitly create a top-level class, it is not even
necessary to define a new class to implement a Java interface. This
functionality, seen in Example 1-18, can be especially useful when
prototyping and testing.

Example 1-18. JRuby working with Java interfaces—condensed
version
include Java

def pop
 puts 'Bang'
end

child = Java::Child.new
child.give(self)

Ruby modules are a natural fit to help implement Java interfaces. In some
ways they resemble abstract Java classes, but Ruby modules are different
in that a class may include many modules.Example 1-19 shows the use of
a module to implement a Java interface and the reuse of this module.

Example 1-19. Implementing a Java interface with a module
include Java

module RunModule
 def run
 1.upto(10) { |i| puts "You're number #{i}" }
 end
end

class HelloThread
 include RunModule
end

java.lang.Thread.new(HelloThread.new).start

JRuby allows you to create an instance of the interface by using
the impl method that's dynamically attached to all Java interfaces. The
method accepts a block as an argument that is executed for every
function call in the interface. The block defines two arguments: the name
of the method in the interface that initiated the block's execution, and a
variable input parameter to accommodate the method
arguments. Example 1-20 uses the impl method to define the sorting
behavior for a Java Comparator.

Example 1-20. Using JRuby's impl method
include Java

v = java.util.Vector.new
v.add_element("Lions")
v.add_element("Tigers")
v.add_element("Bears")

java.util.Collections::sort(v, java.util.Comparator.impl do
|method, *args|
 case method.to_s
 when "compare"
 args[0] <=> args[1]
 when "equals"
 args[0] == args[1]
 end
end)

v.each do |val|
 puts val
end

Another interesting technique of working with an interface is to use a
Ruby block as the input to a method where you would normally use a
single-method Java interface. The Ruby block style can be used with
nonoverloaded methods that expect to be called with a single argument
that is a Java interface. When a block is passed to such a method, the
JRuby runtime attempts to generate a proxy object that implements the
interface. Overloaded and multiple methods make this process ambiguous
and unworkable. Example 1-21 illustrates how this feature can make the
Java Swing development significantly more concise.

Example 1-21. Implementing a Java interface with a Ruby block
frame = javax.swing.JFrame.new
frame.set_size 500,200

a = javax.swing.JButton.new("hello")
b = javax.swing.JButton.new("world")

#define the function using a block
a.add_action_listener do |evt|
 puts 'hello'
end

define the function using a Ruby Proc
p = lambda{ |evt| puts 'world'}
b.add_action_listener &p

frame.add a
frame.add b
frame.set_layout(java.awt.GridLayout.new(1, 2))
frame.show

A Ruby Proc object can also be passed once it is transformed into a Ruby
block using the & operator.

NOTE

Java interfaces that define a single method are sometimes referred to
as single abstract method types, abbreviated as SAM types. All of
the proposals for adding closures/blocks to Java 7 attempt to make
implementation of these types significantly simpler and closer to what
JRuby provides.

1.10.4. See Also

• Section 5.2"

1.11. Opening Java Classes with JRuby

1.11.1. Problem

You want to add methods to a Java class.

1.11.2. Solution

Import the Java class so that the class can be referenced, and add
methods as you would to any Ruby class.

1.11.3. Discussion

In Ruby, class definitions are never finalized; new methods can be added
at any time. This is perhaps one of the most significant differences
between Java and Ruby. In Java, class definitions are tightly bound to
filenames and directory structures. The complete definition of the Java
class java.util.HashMap will be found in a file
named /java/util/HashMap.class. In Ruby, no such relationship exists and
classes can be defined across multiple source files. With JRuby, it's
possible to apply this language feature to Java classes. Example 1-
22 shows a simple example of enhancing the java.util.HashMap class
with a method named is?.

Example 1-22. Adding a method to HashMap
include Java

import java.util.HashMap

class HashMap
 def is?(key,value)
 value == get(key)
 end
end

As you can see in this example, within the new method we can call
methods defined by the original Java class. Once this code is executed,
JRuby instances of the HashMap class, including those already created, will
have this new method. This even applies to instances of the class created
by Java code. Examples Example 1-23 and Example 1-24 contain a Java
class that creates aHashMap object and Ruby code that opens
the HashMap class and exercises the new method.

Example 1-23. A simple class to generate a HashMap object
package org.jrubycookbook.ch01;

import java.util.*;

public class MapMaker {
 public static Map makeMap() {
 Map m = new HashMap();
 m.put("k1", "v1");
 m.put("k2", "v2");
 return m;
 }
}

Example 1-24. Applying open class semantics to an instance
created with Java code
include Java

import java.util.HashMap
import org.jrubycookbook.ch01.MapMaker

h = MapMaker.makeMap()

class HashMap
 def isNot?(key,value)
 value != get(key)
 end
end

puts (h.isNot? 'k1', 'v1')
puts (h.isNot? 'k2', 'v3')

However, any added methods are only visible to the JRuby runtime. If
you were to pass an instance of this modified HashMap class to Java code,
the new methods would not be available.

JRuby also includes a utility method called extend_proxy that allows you
to add new methods to all implementations of a particular
interface. Example 1-24 could be rewritten to use this functionality so as
to work with any implementation of java.util.Map. This can be seen
in Example 1-25.

Example 1-25. Using extend_proxy to open all implementations
of an interface
include Java

import org.jrubycookbook.ch01.MapMaker

h = MapMaker.makeMap()

JavaUtilities.extend_proxy('java.util.Map') do
 def isNot?(key,value)
 value != get(key)
 end
end

puts (h.isNot? 'k1', 'v1')
puts (h.isNot? 'k2', 'v3')

1.11.4. See Also

• Section 1.6"

1.12. Setting Up Eclipse for JRuby
Development

1.12.1. Problem

You use the Eclipse Integrated Development Environment (IDE) for Ruby
development and want to run Ruby code easily with the JRuby
interpreter.

1.12.2. Solution

When using the Ruby Development Tools (RDT) plugin, create a new
Ruby VM definition that is pointed at your JRuby installation location and
whose type is set to JRuby VM. When using the Dynamic Language Toolkit
(DLTK) plugin, create a new Ruby interpreter definition that references
the JRuby launch script: bin\jruby.bat (for Windows) or bin/jruby (for
Linux and Mac OS X) from your JRuby installation.

1.12.3. Discussion

Both RDT and DLTK can be configured to work with multiple Ruby
interpreters. RDT has a specific setting available for the JRuby interpreter,
whereas DLTK simply treats JRuby as a generic Ruby interpreter.

1.12.3.1. RDT

RDT, available from http://rubyeclipse.sourceforge.net, supports
configuration of Ruby interpreters based on the installation directory. To
add JRuby as an interpreter, open the Preferences dialog and locate the
Installed Interpreters page. Click the Add button to open the Add RubyVM
dialog (seen in Figure 1-5). In this dialog, select JRuby VM as the RubyVM
type and select the JRuby installation directory as the RubyVM home
directory. You can also override the display name with something more
user-friendly. Once you're satisfied with the settings, click OK.

Figure 1-5. RDT Add RubyVM dialog

1.12.3.2. DLTK

The Dynamic Language Toolkit project, hosted
at http://www.eclipse.org/dltk, is a broad project sponsored by the
Eclipse Foundation to provide general support for dynamic languages in
the Eclipse development environment. Currently, support is available
through the DLKT project for Ruby, TCL, and Python. The DLTK Ruby
plugin does not make a distinction between a standard Ruby interpreter
and the JRuby interpreter. Just as when configuring RDT, open the
Preferences dialog and locate the Interpreters page. Click the Add button
to open the "Add interpreter" dialog, seen in Figure 1-6. Select
the bin\jruby.bat (for Windows) or bin/jruby (for Linux and Mac OS X) as
the interpreter executable. As with RDT, you can change the interpreter
name to something more user-friendly. Finally, click OK to add the
interpreter.

Figure 1-6. DLTK "Add interpreter" dialog

1.12.3.3. Running JRuby as a Java application

Although both RDT and DLTK can easily interface with the JRuby
interpreter because they are both designed for Ruby development, you
are not able to manage the classpath used by the Java Virtual Machine
inside which JRuby is running. This is a problem when referencing Java
classes located in external JAR files. Since the JRuby interpreter is simply
a Java class, it can be run as such within Eclipse. To do this, open the Run
dialog by selecting "Open Run Dialog..." from the Run menu. Select Java
Application and click the New button to create a new launch configuration.
For the Main class, enter org.jruby.Main. In the Arguments tab, put the
path to the Ruby file you want to run in the Program arguments section
(along with any other application-specificarguments). The VM arguments
should include the jruby.base, jruby.home, and jruby.lib system
properties. Set jruby.base and jruby.home to the JRuby installation
directory and jruby.libto the JRuby lib directory for the last one. Eclipse
has an expression language available to this dialog that allows you to
reference the JRUBY_HOME environment variable while setting these
properties with this value:

-Djruby.base="${env_var:JRUBY_HOME}" -
Djruby.home="${env_var:JRUBY_HOME}"
-Djruby.lib="${env_var:JRUBY_HOME}/lib"

Finally, in the Classpath tab, add bsf.jar and jruby.jar from
JRuby's lib directory and any other JAR files needed by your code. Then,
click the Run button to execute.

Eclipse also supports expressions that prompt the user for input. You can
use this functionality to make the launch configuration more reusable.
You can prompt for a file, which opens the operating system's standard
file selection dialog, with:

${file_prompt:Ruby Script Name}

To prompt specifically for a file within the workspace, use:

${resource_loc:${string_prompt:Ruby Script Name}}

In this case, the user is prompted for a location within the Eclipse
workspace that is then converted into a filesystem path. You can see
these expressions in use in Figure 1-7.

Figure 1-7. Generic JRuby launch configuration

Running this configuration opens a dialog, seen in Figure 1-8, where you
can enter the workspace path to the Ruby script you want to execute. On
subsequent executions, Eclipse automatically populates this dialog with
the last value entered.

Figure 1-8. Eclipse variable input dialog

Note that using this type of launch configuration doesn't require using
RDT or DLTK, although those plugins would still provide useful
functionality, including code completion and RDoc integration.

1.12.4. See Also

• Section 1.2"

1.13. Setting Up NetBeans for JRuby
Development

1.13.1. Problem

You want to develop Ruby applications with NetBeans.

1.13.2. Solution

Download NetBeans 6.5 from http://www.netbeans.org and run the
installer. NetBeans is available in a variety of bundles; both the Ruby and
All bundles include support for Ruby development. In addition to Ruby,
the All bundle includes support for Java, Web, Mobile, and C/C++, as well
as both Apache Tomcat and Sun GlassFish application servers.

If you are already using NetBeans 6.5, Ruby support can be installed
using the Plugins dialog, seen in Figure 1-9. This plugin adds new
NetBeans project types for Ruby and Rails, graphical debuggers for Ruby
and Rails, a Ruby Code Editor, and a RubyGems client.

Figure 1-9. Installing the NetBeans Ruby plugin with the
Plugins dialog

Once the Ruby plugin has been installed, use the Ruby page in the Ruby
Platforms dialog seen in Figure 1-10 to manage the Ruby runtimes used
by your projects. Notice the options to add new runtimes or modify an
interpreter's gem repository location and debug level. By default, your
Ruby project will use the JRuby runtime shipped with the Plugin, but you
can assign a specific Ruby Platform to your application by using the
project's properties dialog.

1.13.3. Discussion

After several years of playing second fiddle to Eclipse, Sun has recently
made some significant investments in the NetBeans project, and it
shows—nowhere more so than in the Ruby plugin. The NetBeans Ruby
Code Editor includes syntax highlighting, code coloring, refactoring
support, and powerful code completion capabilities. The code completion
functionality can be seen in Figure 1-11. The editor displays a list of
possible methods in a small window, including built-in and user-defined

Ruby classes. Hitting the space bar at this point inserts the complete
name into the editor.

Figure 1-10. NetBeans Ruby Platform Manager dialog

Figure 1-11. NetBeans Ruby code completion

You can also change the editor's font and highlighting colors or change
the key bindings to match your personal preferences. Configuration is
done in the Options dialog seen in Figure 1-12. Choose the Fonts & Colors
tab and select a Profile from the list. OS X Ruby developers might be
interested in a TextMate theme, Aloha
(http://pages.huikau.com/AlohaTheme.nbm), for a more familiar color
palette and highlighting rules. The Keymap page has bindings for Eclipse,
Emacs, and older versions of NetBeans.

Figure 1-12. NetBeans Fonts & Colors Options dialog

1.13.4. See Also

• Section 2.12"

1.14. Platform Detection in a JRuby
Application

1.14.1. Problem

You would like to detect the platform used by the Ruby runtime and
customize your code for a JRuby runtime environment.

1.14.2. Solution

You can detect whether your application is running in JRuby by evaluating
the JRUBY_V⁠E⁠R⁠SION system variable. This value will always be defined

in a JRuby application but never in any other Ruby runtime.
The generate_random_number method in Example 1-26 uses the random
number generator from the Java Math class in a
JRuby environment; otherwise, the application calls Ruby's rand method.

Example 1-26. JRuby platform detection
class DetectionExample

 def generate_random_number
 if(defined?(JRUBY_VERSION))
 require 'java'
 puts 'executing java method'
 java.lang.Math.random
 else
 puts 'executing ruby method'
 rand(0)
 end
 end

end

d = DetectionExample.new
puts d.generate_random_number

1.14.3. Discussion

The RUBY_PLATFORM variable has information about the runtime
environment and is set to java in JRuby. It was used with early versions
of JRuby for platform detection, but the JRUBY_VERSIONvariable was later
added to identify unequivocally that the code was running in JRuby and
not another Ruby interpreter written in Java. The new variable also
opened up the possibility for JRuby version-specific code.

Chapter 2. JRuby on Rails

Introduction

Installing and Setting Up Rails

Packaging Rails As a Java EE Web Application

Using an External Gem Repository with a Web Application

Configuring the JRuby-Rack Servlet

Packaging Rails with a JNDI DataSource

Deploying Rails on Tomcat

Deploying Rails on JBoss

Deploying Rails on Jetty

Deploying Rails with jetty_rails

Deploying Rails with Mongrel

Deploying Rails on the GlassFish v2 Server

Using the GlassFish v3 Gem

Using ActiveRecord Outside of Rails

Accessing Common Java Servlet Information

Configuring Session Storage

Controlling the Classes, Directories, and Other Files Packaged into a Rails
WAR File

Changing the Name of the WAR File and the Staging Area

Deploying a Rails Application to the Root Context

Creating a Rails Application with Aptana Studio

Accessing Static Files in Your Rails Java EE Application

2.1. Introduction

Since its introduction in mid-2004, the Ruby on Rails web framework has
rapidly gained a significant following within the web development
community. It is the single largest factor in the overall increase in interest
in the Ruby programming language. Likewise, JRuby's ability to run Rails
applications inside a Java Virtual Machine has been a driver for interest in
JRuby. This chapter explores some techniques for running Rails
applications in a Java environment.

Ruby on Rails is a framework for developing web applications that follows
the model-view-controller (MVC) architecture. The notion of Convention
over Configuration is stressed throughout the framework, most
prevalently within ActiveRecord, the object-relational-mapping (ORM)
subsystem. ActiveRecord uses database metadata (table and column
names) to dynamically define domain classes. Using ActiveRecord, simply
adding a new column to a database table automatically adds a
corresponding field to the related domain class.

Running Rails applications on JRuby provides several advantages:

• Rails applications can be deployed into existing Java EE containers
such as Tomcat, JBoss, and GlassFish.

• Through Java Database Connectivity (JDBC), Rails applications can
be connected to virtually any database for which a JDBC driver
exists.

• Rails applications can access container-managed database
connection pools through Java Naming and Directory Interface
(JNDI).

In short, the combination of JRuby and Rails produces an enterprise-
friendly package that blends seamlessly into an existing Java EE
environment. From an application deployer's perspective, the Rails
application is just another Java EE web application; if JNDI data sources
are used, the application deployer never even needs to look at Rails
configuration files.

Beyond JRuby, the primary library that provides the bridge between the
Java EE container and Rails is called JRuby-Rack. JRuby-Rack is basically
a Java servlet filter that dispatches requests to a Rails application running
inside JRuby. JRuby-Rack creates a pool of JRuby runtime instances.
Configuration of the JRuby-Rack servlet is discussed in Section 2.5. Early
approaches to Java EE packaging and servlet integration used the
GoldSpike project, but that code has been deprecated and replaced by
JRuby-Rack.

In addition to JRuby-Rack, the JRuby team has produced Warbler, a tool
for packaging a Rails application as a WAR file to facilitate deployment.

The middle part of this chapter goes through the specific steps required to
deploy Rails applications onto major open source Java EE application
servers. Although these recipes are very similar to one another, we
thought it was important to provide the container-specific details. The last
few recipes describe some additional configuration and usage scenarios
when using JRuby and Rails together.

NOTE

As this book was going into production, the Rails team announced that
the upcoming Rails 2.2 release would incorporate a number of changes
designed to improve the thread-safety of the Rails core. Although it is too
soon to tell how effective these changes will be, the likely outcome is that
deploying Rails applications on JRuby will become substantially simpler.
The JRuby team is closely tracking these developments and will
undoubtedly continue to iterate the tools described in this chapter to take
advantage of any new capabilities that are part of future Rails versions.

2.2. Installing and Setting Up Rails

2.2.1. Problem

You want to run Ruby on Rails with JRuby.

2.2.2. Solution

Install the latest Ruby on Rails gem with this command:

$ jruby –S gem install rails

If you're running Rails 2.x, it is recommended you install the jruby-
openssl gem to take advantage of all the security features and session
storage options. This gem is the Java implementation of
the openssl gem:

$ jruby –S gem install jruby-openssl

Now create your Rails application with JRuby:

$ jruby –S rails MyKillerApplication

Test your new Rails application:

$ cd MyKillerApplication
$ jruby ./script/server

Open your browser and go to http://localhost:3000. You should see the
ubiquitous Rails welcome screen, shown in Figure 2-1.

Figure 2-1. Ruby on Rails welcome screen

2.2.3. Discussion

The next step is to configure Rails to connect to your database. The JRuby
team has made this easy by allowing Rails to use the familiar and widely
supported Java JDBC drivers. You first need to install the activerecord-
jdbc-adapter gem:

$ jruby –S gem install activerecord-jdbc-adapter –y –-no-ri –-no-
rdoc

The gem allows the Rails database management system, ActiveRecord, to
use a JDBC connection or connection pool for database access. This can
be conveniently configured in the standard Railsdatabase.yml file by
specifying the JDBC URL or a JNDI address. The
example database.yml in Example 2-1 is configured to use a JDBC
connection in the development environment and container-
provided javax.sql.DataSource with the JNDI
name java:comp/env/jdbc/rails_db in the production environment.
Remember to include the JDBC driver in your classpath when using the
standard jdbc adapter.

Example 2-1. Example database.yml using JDBC
development:
 adapter: jdbc
 url: jdbc:mysql://localhost:3306/jrubycookbook_development
 driver: com.mysql.jdbc.Driver
 username: jruby
 password: cookbook

production:
 adapter: jdbc
 jndi: java:comp/env/jdbc/rails_db
 driver: com.mysql.jdbc.Driver

The JRuby Extras project contains a set of database adapters for the most
commonly used open source databases by Java developers, including h2,
JavaDB (Derby), MySQL, HSQLDB (Hypersonic), and Postgres. The
adapter gems give you the option of using ordinary Rails database
configuration values in your database.yml file rather than specifying a
class and JDBC driver URL. The gems also include and automatically load
their respective JDBC driver JARs, so it isn't necessary to manually
include the classes. If you are using one of the supported databases, you
can install the gem by adding
your database name, mysql, postgres, derby, hsqldb, or h2 to the base

gem name, activerecord-jdbc<database name>-adapter. This is how
you would install the adapter for a MySQL database:

$ jruby –S gem install activerecord-jdbcmysql-adapter

This database.yml in Example 2-2 shows an example configuration that
uses the newly installed gem. Notice how it doesn't use a JDBC URL as in
the previous example, but uses standard Rails configuration parameters.

Example 2-2. Example database.yml using activerecord-
jdbcmysql-adapter
development:
 adapter: jdbcmysql
 encoding: utf8
 database: jrubycookbook_development
 username: jruby
 password: cookbook
 port: 3306
 host: localhost

2.2.4. See Also

• Section 2.6"
• The JRuby Extras Project, http://rubyforge.org/projects/jruby-

extras

2.3. Packaging Rails As a Java EE Web
Application

2.3.1. Problem

You want to package a Rails app as a Java EE web application for
deployment onto a standard Java EE web container.

2.3.2. Solution

Use Warbler to package your Rails application as a WAR file. Start by
installing the gem:

$ jruby –S gem install warbler

This gem adds the warble command, which allows you to create,
configure, and clean up the WAR file. All Warbler commands should be
executed in the root directory of your Rails application. Start by creating a
Warbler configuration file with this command:

$ jruby –S warble config

The new configuration file is written to config/warble.rb. This file allows
you to set most of the necessary options for building your WAR and
determining how Rails will run in the web container. Open warble.rb and
configure config.webxml.rails.env to the environment of your Rails
deployment. Next, add all the gems used by your web application to
the config.gems hash except for the rails gem. Rails is included in the
default hash. An example warble.rb file showing these options can be
seen in Example 2-3.

Example 2-3. Example Warbler configuration file
Value of RAILS_ENV for the webapp
config.webxml.rails.env = 'development'

List of all your application's gems
config.gems << "activerecord-jdbcmysql-adapter"
config.gems << "jruby-openssl"

You're ready to create a WAR file by running this command:

$ jruby –S warble war

This generates a WAR file named the Rails project home directory name
by default. For example, if our Rails project was in
the MyKillerApplication folder, the WAR file would be
namedMyKillerApplication.war. This WAR file can then be deployed into
your Java EE container using the container's deployment process.

2.3.3. Discussion

Warbler is a Ruby gem for packaging a Rails application as a Java EE web
application. It is built on the Rake build system and JRuby-Rack servlet
adapter. The default implementation of the adapter uses a servlet filter
that allows the container's default servlet to process the static content
rather than Rails. Early versions of Warbler used the GoldSpike servlet,
but the GoldSpike project has been deprecated and has been replaced by

JRuby-Rack. The JRuby-Rack library includes a stub version of the
GoldSpike servlet in order to maintain compatibility with legacy GoldSpike
applications.

The unpacked source of the WAR file is found in the newly
created tmp/war folder in the project's home directory. If you browse the
contents of the unpacked WAR file, you'll see some parts of your Rails
application mixed in with other familiar Java EE folders. Warbler
reassembles the Rails application to the Java EE standard by placing the
static content normally found in the Rails publicfolder in the top level of
the WAR and packaging the rest of the Rails application in the WEB-
INF directory. Warbler has also bundled jruby-rack.jar, which contains the
necessary classes to integrate with a Java EE container, and jruby-
complete.jar, the standalone distribution of the JRuby with all the
dependent classes, in the WEB-INF/lib directory.

The war task is actually comprised of many subtasks, which you can
access separately. Since Warbler is a wrapper around Rake, use the -
T flag to see a full list of Warbler's options and description of its
capabilities:

$ jruby –S warble –T
rake config # Generate a configuration file to
customize your wa...
rake pluginize # Unpack warbler as a plugin in your Rails
application
rake version # Display version of warbler
rake war # Create MyKillerApplication.war
rake war:app # Copy all application files into the .war
rake war:clean # Clean up the .war file and the staging
area
rake war:gems # Unpack all gems into WEB-INF/gems
rake war:jar # Run the jar command to create the .war
rake war:java_classes # Copy java classes into the .war
rake war:java_libs # Copy all java libraries into the .war
rake war:public # Copy all public HTML files to the root
of the .war
rake war:webxml # Generate a web.xml file for the webapp

By default, Warbler will include the latest version of each gem in your
gem repository, but you have the option to target specific versions of
gems when packaging the WAR file. Set theconfig.gems hash with the
version number of the gem like this:

config.gems["rails"] = "2.0.2"
config.gems["activerecord-jdbcmysql-adapter"] = "0.8.2"

2.3.4. See Also

• Section 2.2"

2.4. Using an External Gem Repository with
a Web Application

2.4.1. Problem

You don't want to package your gems into your web application but want
to use a gem repository on the filesystem.

2.4.2. Solution

There are a few situations where you might want to use a different gem
repository outside of the default JRuby runtime's repository. This could
useful when you are maintaining a shared set of gems that are being
accessed by both C Ruby and JRuby. You can configure your web
application to use a separate gem repository through
thegem.path or gem.home system properties. These properties can be set
in the WAR's descriptor file, web.xml, or through a system property when
the container is started, as seen in Example 2-4.

Example 2-4. Sample web.xml setting the gem.path context
parameter
<context-param>
 <param-name>gem.path</param-name>
 <param-value>C:\projects\jruby\jruby-
1.1\lib\ruby\gems</param-value>
 </context-param>

 <!-- Alternatively
 <context-param>
 <param-name>gem.home</param-name>
 <param-value>C:\projects\jruby\jruby-
1.1\lib\ruby\gems</param-value>
 </context-param>-->

You can also set the gem.path in the startup parameters for the servlet
container:

$ java -jar start.jar etc/jetty.xml \
–Dgem.path="C:\projects\jruby\jruby-1.1\lib\ruby\gems"

2.4.3. See Also

• Section 2.3"

2.5. Configuring the JRuby-Rack Servlet

2.5.1. Problem

You want to configure the number of JRuby runtimes in the container.

2.5.2. Solution

Edit the values in warble.rb to your desired settings:

config.webxml.jruby.min.runtimes = 2
config.webxml.jruby.max.runtimes = 4

Generate the Rails WAR file:

$ jruby –S warble war

2.5.3. Discussion

The JRuby-Rack servlet allows Rails to integrate into most Java EE
containers. Because many parts of Rails prior to version 2.2 are not
threadsafe, the runtime cannot be used to simultaneously process
multiple requests. JRuby-Rack utilizes a configurable pool of JRuby
runtimes that are dispatched for each incoming Rails request. The number
of simultaneous requests that can be processed is limited by the number
of available runtimes. Any additional requests will block and must wait for
a runtime to become free. It's highly advised that you set a maximum
number of runtimes for your production application because by default
Warbler will allow for an unlimited number of runtimes. These are all the
configuration options:

config.webxml.jruby.max.runtimes

This sets the most number of active JRuby runtimes in the pool,
which determines the maximum number of simultaneous
requests. Default value is unlimited.

config.webxml.jruby.min.runtimes

This determines the number of "warm" runtimes or the minimum
number of runtimes in the pool. It also dictates how many
instances when the application is started. The default value is
none.

config.webxml.jruby.runtime.initializer.threads

This sets how many threads will be used to initialize the JRuby
runtimes in the pool. The value will vary based on the number of
runtimes you intend to use at startup and the initialization time
of the pool. The default value is 4.

config.webxml.jruby.runtime.timeout.sec

This sets how long in milliseconds an incoming request should
wait for a JRuby runtime before returning an error. The default is
30 seconds.

The CPU, memory, and system resources of the host machine generally
determine the number of maximum and minimum idle runtimes. The
JRuby runtime is a memory-intensive application, so it is recommended to
run the application with a generous amount of both permanent generation
(PermGen) and heap memory. This is especially true when using a large
number of runtimes.

NOTE

Developers who are upgrading from an early version of Warbler and using
the GoldSpike servlet can continue to use their existing warble.rb file to
configure the JRuby pools. The JRuby-Rack adapter supports the legacy
GoldSpike configuration values, but you're advised to update your

configuration to JRuby-Rack parameters because it's possible this support
will be eliminated in later releases.

2.5.4. See Also

• Section 2.3"

2.6. Packaging Rails with a JNDI DataSource

2.6.1. Problem

You want to configure your Rails application to access a JDBC DataSource
through Java Naming and Directory Interface (JNDI).

2.6.2. Solution

Install the activerecord-jdbc-adapter gem (as in Section 2.2) and edit
your database.yml file. The JNDI lookup service is provided by
the jdbc adapter gem. Set the driver value to your database's
JDBC Driver class and add the JNDI location of the JDBC DataSource.
This example database.yml file is configured to use a JDBC factory for a
MySQL database:

development:
 adapter: jdbc
 jndi: java:comp/env/jdbc/rails_db
 driver: com.mysql.jdbc.Driver

Use Warbler to package your Rails application (see Section 2.3). Edit
your warble.rb file and set the resource reference name of your JNDI
DataSource in the configuration file:

JNDI data source name
config.webxml.jndi = 'jdbc/rails_db'

Repackage the WAR by running Warbler's war task:

$ jruby –S warble war

2.6.3. Discussion

The war or war:webxml tasks create or overwrite an existing Java EE web
deployment descriptor file, /WEB-INF/web.xml, in your Warbler staging
area, tmp/war. Both tasks add the resource-refdefinition and all the
required information for a new JDBC DataSource. Here is an
example web.xml for Rails application using a JNDI DataSource
referenced at jdbc/rails_db:

<resource-ref>
 <res-ref-name>jdbc/rails_db</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

You always have the option of manually editing the files and values
generated by Warbler. If you choose to edit the web.xml descriptor file by
defining new DataSources or setting configuration values or references,
you can use Warbler's war:jar task to skip the file generation steps and
package all the files in the staging folder into the application WAR file:

$ jruby –S warble war:jar

2.6.4. See Also

• Section 2.3"

2.7. Deploying Rails on Tomcat

2.7.1. Problem

You want to deploy a Rails Java EE application using Apache Tomcat.

2.7.2. Solution

Package your Rails application as a Java EE WAR (see Section 2.3). Place
the resulting WAR file in the Tomcat's webapps directory. If you are using
one of the database-specific JDBC adapter gems, you're ready to start
Tomcat. If your Rails application is using the regular jdbc adapter,
include the JDBC adapter's JAR file in your classpath or copy the JAR file
into$TOMCAT_HOME/common/lib.

Be sure to set the JAVA_HOME environment variable to the folder where
you've installed Java. A performance tip is to start Tomcat with the -
server flag. It is also advisable to set constraints for the heap and
PermGen so potential memory leaks do not consume all the resources on
the server and cripple the machine.

2.7.2.1. Windows
> set JAVA_HOME=c:\Program Files\Java\jdk1.5.0_12
> set CATALINA_OPTS=-server –Xms512m –Xmx1024m -XX:PermSize=256m
\
 –XX:MaxPermSize=512m
> catalina.bat start

2.7.2.2. Linux and OS X
$ export JAVA_HOME=/usr/java/jdk1.5.0_12
$ export CATALINA_OPTS='-server –Xms512m –Xmx1024m -
XX:PermSize=256m
 –XX:MaxPermSize=512m'
$./catalina.sh start

2.7.3. Discussion

NOTE

It is important to understand JRuby's memory usage so that you can
properly tune your applications. The JVM has separate memory spaces.
One, known as permanent generation (PermGen), is reserved for internal
class file representations and VM data structures. The other, heap, is the
more commonly known and is typically used to store the data represented
in those classes. A lot of JRuby success is owed to the ability to work
around the rules of a statically compiled language (i.e., Java) by
generating classes and data structures at runtime. The cost of this
approach is that in some cases JRuby may need to generate a large
number of objects and these objects are all stored in the permanent
generation space and not the heap. Consider the case of Rails, where a
single request could generate hundreds of JRuby objects. This usage of
PermGen is many times the default case, so the default VM memory
setting is often insufficient. The JRuby team has made strides in
alleviating the problem, such as allowing JRuby runtimes to share
PermGen space, but you should take a cautious approach by setting initial
and maximum values for your PermGen and heap, especially for
production applications.

If you are using Tomcat with a JNDI DataSource, then start by packaging
your Rails application (see Section 2.3). Navigate to the WAR's staging
area, tmp/war, and add the context.xml file to the META-INF folder.
Create the folder if it does not already exist. Example 2-5 shows how you
would define a resource in context.xml to access a MySQL database. The
resource definition includes the database connection information, the
resource's JNDI name, and the context path of this application, which will
match the beginning of the request Uniform Resource Identifier (URI) of
your web application.

Example 2-5. Tomcat context.xml JNDI configuration

<Context path="/MyKillerApplication"
docBase="MyKillerApplication"
 debug="5" reloadable="true" crossContext="true">

 <Resource name="jdbc/rails_db" auth="Container"
type="javax.sql.DataSource"
 maxActive="100" maxIdle="30" maxWait="10000"
 username="root" password="password"
 driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://localhost:3306/jrubycookbook_development?autoRe
connect=true"/>

</Context>

The resource could have also been defined
in $TOMCAT_HOME/conf/server.xml, but that approach is discouraged by
the Tomcat authors since it applies to all the web applications. Packaging
the resource in the web application makes sense both because it reflects
good code organization and because it allows you to redefine and update
the DataSource by redeploying the self-contained web application and
avoid restarting the server.

Rebuild the WAR using warble, move your application to the deployment
folder, and start the server using the information provided in the solution.

2.7.4. See Also

• Section 2.3"
• Section 2.6"

2.8. Deploying Rails on JBoss

2.8.1. Problem

You want to deploy a Rails application on the JBoss Application Server.

2.8.2. Solution

Package your Rails application as a Java EE WAR (see Section 2.3). Copy
the application WAR into $JBOSS_HOME\server\default\deploy, the
default JBoss deployment folder, or any server-specific deployment
directory you have defined in the JBoss configuration files. If you are
using the non-database-specific jdbc adapter for connecting to your
database, be sure to include the JDBC JAR in the classpath. You can also
copy the JDBC JAR into $JBOSS_HOME\server\default\lib if you're running
the default server.

Be sure to start the application server with the –server flag and set some
expected size for your heap and permanent generation, PermGen,
memory space. Typically this is done through theJAVA_OPTS environment
variable.

2.8.2.1. Windows

> SET JAVA_HOME=c:\Program Files\Java\jdk1.5.0_12
> SET JAVA_OPTS=-server –Xms512m –Xmx1024m -XX:PermSize=256m –
XX:MaxPermSize=512m
> run.bat

2.8.2.2. Linux and OS X
$ export JAVA_HOME=/usr/java/jdk1.5.0_12
$ export JAVA_OPTS='-server –Xms512m –Xmx1024m -XX:PermSize=256m\
 –XX:MaxPermSize=512m'
$./run.sh

2.8.3. Discussion

If you are using a JNDI resource for your Rails database connection, you
will need to create the DataSource in the JBoss server. The JBoss
distribution provides sample DataSource configurations for most of the
popular databases in the examples
folder, $JBOSS_HOME\docs\examples\jca. This a great starting place for

simple database setups. After you have edited the file, you can easily
deploy a DataSource in JBoss by placing the file in the deployment
directory. $JBOSS_HOME\server\default\deploy is the deployment folder
for the default server.

If you're running a MySQL database, change the <jndi-
name>MySqlDS</jndi-name> configuration parameter to the name of your
DataSource, rails_db in this example. Set the rest of database
information in the configuration file with the appropriate values for your
database. Example 2-6 shows an edited mysql-ds.xml DataSource
definition for the example application. Note that thejndi-name does not
include the jdbc prefix. Copy the mysql-ds.xml file to your deployment
directory.

Example 2-6. Sample mysql-ds.xml JBoss DataSource
configuration file
<datasources>
 <local-tx-datasource>
 <jndi-name>rails_db</jndi-name>
 <connection-url>
 jdbc:mysql://localhost:3306/jrubycookbook_development
 </connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>root</user-name>
 <password>password</password>
 <connection-property name="autoReconnect">true</connection-
property>
 <!-- Typemapping for JBoss 4.0 -->
 <metadata>
 <type-mapping>mySQL</type-mapping>
 </metadata>
 </local-tx-datasource>
</datasources>

Even though you have defined the DataSource, you still need to map
between this resource and the web application. This binding information is
defined in the jboss-web.xml file and packaged along with your web
application. Warbler does not generate this file, so you will need to create
the jboss-web.xml file in the WEB-INF directory of Warbler's staging
area, tmp/war, as in Example 2-7.

Example 2-7. Sample JBoss deployment descriptor
<jboss-web>
 <context-root>/MyKillerApplication</context-root>
 <resource-ref>
 <res-ref-name>jdbc/rails_db</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <jndi-name>java:rails_db</jndi-name>
 </resource-ref>
</jboss-web>

You can configure your DataSource to be the default DataSource for the
JBoss server by naming it DefaultDS and removing the default
DataSource included with the JBoss
installation,$JBOSS_HOME/server/all/deploy/hsqldb-ds.xml.

2.8.4. See Also

• Section 2.3"
• Section 2.6"

2.9. Deploying Rails on Jetty

2.9.1. Problem

You want to deploy a Rails application on the Jetty Servlet container.

2.9.2. Solution

Package your Rails application as a Java EE WAR (see Section 2.3). If
you've defined a JDBC connection with the jdbc adapter or using a JNDI
DataSource, remember to include the JDBC adapter in your classpath or
copy the JAR into $JETTY_HOME/lib to make it available to any deployed
web applications. Place the WAR into
Jetty's $JETTY_HOME/webapp folder. Start the server with the –
server VM option and default heap and PermGen values:

$ java -server –Xms512m –Xmx1024m -XX:PermSize=256m –
XX:MaxPermSize=512m\
 -jar start.jar etc/jetty.xml

2.9.3. Discussion

If you would like to use a JNDI resource for your Rails database
connection, start by defining a DataSource in your WAR. Create a file
called jetty-env.xml in the WEB-INF folder of your staging area. Example
2-8 shows a jetty-env.xml configuration for a MySQL database.

Example 2-8. Sample jetty-env.xml file

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD
Configure//EN"
 "http://jetty.mortbay.org/configure.dtd">

<Configure class="org.mortbay.jetty.webapp.WebAppContext">

 <New id="rails_db"
class="org.mortbay.jetty.plus.naming.Resource">
 <Arg>jdbc/rails_db</Arg>
 <Arg>
 <New
class="com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSourc
e">
 <Set
name="Url">jdbc:mysql://localhost:3306/jrubycookbook_development<
/Set>
 <Set name="User">root</Set>
 <Set name="Password">password</Set>
 </New>
 </Arg>
 </New>
</Configure>

Repackage your application with Warbler and deploy to Jetty. Jetty's JNDI
module is not enabled in the standard webapps deployment folder by
default, so either update$JETTY_HOME/etc/jetty.xml to enable JNDI for
this directory or configure Jetty to use an alternative directory. It is the
Jetty convention to install applications that require JNDI into
the webapps-plus directory:

$ copy MyKillerApplication.war $JETTY_HOME/webapps-plus

Jetty supplies a convenient $JETTY_HOME/etc/jetty-plus.xml file, which
configures Jetty to use that folder. Run this command from the Jetty
home directory to start Jetty with JNDI support:

$ java -server –Xms512m –Xmx1024m -XX:PermSize=256m –
XX:MaxPermSize=512m –jar\
 start.jar etc/jetty.xml etc/jetty-plus.xml

2.9.4. See Also

• Section 2.3"
• Section 2.6"

2.10. Deploying Rails with jetty_rails

2.10.1. Problem

Many Rails developers today have never worked with the Java EE
packaging process and launch their applications by navigating to the top
level of their Rails project and starting one of two popular Ruby web
servers: Mongrel or WEBrick. You want to run the Jetty application server
with your Rails application but use a deployment method more familiar to
Rails developers.

2.10.2. Solution

Use the jetty_rails gem, which allows you to run a Rails application
with the Jetty server without performing any Java EE packaging. First,
install the jetty_rails gem:

jruby –S gem install jetty_rails

Then, go to the top of your Rails application and start the Jetty server:

$ cd jrubycook_application
$ jruby -S jetty_rails

2.10.3. Discussion

You can get a list of some common startup parameters by running this
command:

jruby –S jetty_rails --help

The port and environment options are common startup parameters used
in the Mongrel and WEBrick HTTP servers:

• Pass in the --port <port> or –p <port> parameter to set the port
of your web application. The default is 3000.

• Use the --environment <env> or –e <env> to specify the Rails
execution environment. The default value is development.

• Set the --context-path <path> or –u <path> parameter to
change your applications context root. Remember to make your
Rails application aware of this change by adding this line of code to
your environment.rb file:

ActionController::AbstractRequest.relative_url_root =
"/my_new_context_root"

• Use the –c or --config parameter to load the server configuration
through an external file. The server will look in the default
location, config/jetty_rails.yml, if you do not include a file path.

The configuration file is valuable beyond the organizational benefit of
getting the startup parameters out of the input arguments. As of version
0.6, you can use the file to tune your application by setting JRuby and
Jetty configuration values, leverage a powerful layered configuration
system, and run multiple Rails applications within a single Jetty instance.

Example 2-9 demonstrates some of these features by configuring several
Rails applications, each in its own context, through
individual content_path definitions as well as a port definition. The
default parameters are set at the end of the file and optionally overridden
within the configuration section for each application. Note in the example
how the development applications override the number of initial runtimes
from five to two.

Example 2-9. Sample jetty_rails.xml configuration file

:servers:
- :context_path: /dev-one
 :adapter: :rails
 :environment: development
 :base: development-dir
 :port: 3000
 :jruby_initial_runtimes: 2
- :context_path: /prod-one
 :adapter: :rails
 :base: production-dir
- :port: 4000
 :apps:
 - :context_path: /dev-two
 :adapter: :rails
 :base: development-dir
 :environment: development
 :jruby_initial_runtimes: 2
 - :context_path: /prod-two
 :base: production-dir
 :adapter: :rails
:environment: production
:jruby_initial_runtimes: 5
:jruby_max_runtimes: 10
:thread_pool_min: 5
:thread_pool_max: 40
:acceptor_size: 20

These are some of the less familiar configuration options:

jruby_initial_runtimes

Specifies the number of JRuby runtimes that will be created on
startup. Note that there are separate runtime pools for each
application context.

jruby_max_runtimes

Sets the maximum number of runtimes in the pool and limits the
number of simultaneous Rails requests.

thread_pool_min

Sets the initial size of the pool of request-handling threads.

thread_pool_max

Sets the maximum size of the pool of request-handling threads.

acceptor_size

Sets the number of acceptors for Jetty's Java NIO-
based SelectChannelConnector.

2.10.4. See Also

• Jetty-Rails website, http://jetty-rails.rubyforge.org

2.11. Deploying Rails with Mongrel

2.11.1. Problem

You want to run a JRuby on Rails application with Mongrel.

2.11.2. Solution

Install the Mongrel gem. The JRuby gem installer should select the latest
Java version of the gem:

$ jruby –S gem install mongrel –-no-ri –-no-rdoc
Updating metadata for 165 gems from http://gems.rubyforge.org
...
.....
complete
Successfully installed gem_plugin-0.2.3
Successfully installed mongrel-1.1.4-java
2 gems installed

Include the JDBC adapter of your database in your classpath if you aren't
using the database-specific jdbc adapter that packages and loads the
driver. Go to your Rails application's home directory and start Mongrel:

$ jruby –S mongrel_rails start
** Starting Mongrel listening at 0.0.0.0:3000
** Starting Rails with development environment...
** Rails loaded.
** Loading any Rails specific GemPlugins
** Signals ready. TERM => stop. USR2 => restart. INT => stop
(no restart).
** Rails signals registered. HUP => reload (without restart).
It might not wor
k well.
** Mongrel 1.1.4 available at 0.0.0.0:3000
** Use CTRL-C to stop.

2.11.3. Discussion

Mongrel is a small but high-performance web server originally written in
Ruby and C. Recently, the C portions have been ported to Java so that
Mongrel can run under JRuby. This was an important milestone for the
project given that many Rails developers use Mongrel in their production
and development environments.

There is an experimental gem to provide clustering support for the Java
version of Mongrel called mongrel_jcluster. Unfortunately, this gem is
currently only supported on Linux, OS X, and Cygwin on Windows. The
default Windows DOS shell is currently not yet supported. This gem
allows you easily start and stop sets of Mongrel servers and attempts to
recreate some of the functionality of mongrel_cluster, which is
incompatible with JRuby. First, install the gem:

$ jruby –S gem install mongrel_jcluster
Successfully installed mongrel_jcluster-0.0.1
1 gem installed

Next, generate a configuration file for your Mongrel cluster:

$ jruby -S mongrel_rails jcluster::configure -p 4000 -N 3 -e
development -R 20202\
 -K thesecretkey
Writing configuration file to config/mongrel_jcluster.yml.

The new file in config/mongrel_jcluster.yml allows you to set the starting
port number of the servers of the –p flag, the number of instances with –
N, and the runtime environment of the cluster with the –e flag.

Start your Mongrel cluster with this command:

$ jruby -S mongrel_rails jcluster::start
Starting JRuby server...
Starting 3 Mongrel servers...

Open your browser to http://localhost:4000, http://localhost:4001,
and http://localhost:4002 to verify that your cluster has properly started.
You can stop the cluster with this command:

$ jruby -S mongrel_rails jcluster::stop
Stopping 3 Mongrel servers...

2.12. Deploying Rails on the GlassFish v2
Server

2.12.1. Problem

You want to deploy a Rails application on the GlassFish v2 application
server.

2.12.2. Solution

Install the GlassFish server and navigate to the home directory. Set up
the deployment area and configure the server with the supplied ant task:

$ $GLASSFISH_HOME/lib/ant/bin/ant -f setup.xml

This will install several libraries and create your Java EE application
deployment folder at $GLASSFISH_HOME\domains\domain1\autodeploy.
Package your Rails application as a Java EE WAR (seeSection 2.3). If
you've defined a JDBC connection with the jdbc adapter or using a JNDI
DataSource, remember to include the JDBC adapter in your classpath or
copy the JAR file into$GLASSFISH_HOME/lib to make it available to your
web applications.

Start the server with this command:

$ $GLASSFISH_HOME/bin/asadmin start-domain

Wait a few seconds after the server starts to allow enough time to deploy
your Rails WAR (Figure 2-2).

Figure 2-2. Starting up the GlassFish server

Open your browser to http://localhost:8080/MyKillerApplication to view
your Rails project.

2.12.3. Discussion

Rails applications that use a JNDI DataSource can use
the asadmin command with input parameters to define the DataSource's
properties. This example creates a connection pool for a MySQL server at
our standard example address jdbc/rails_db:

$ $GLASSFISH_HOME\bin\asadmin create-jdbc-connection-pool –
datasourceclassname \
 com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource \
 --restype javax.sql.DataSource –property
User=root:Password=password:\
 URL=jdbc\:mysql\://localhost:3316/jrubycookbook_development
jdbc/rails_db
Command create-jdbc-connection-pool executed successfully.

Next, make the new DataSource available to your Rails WAR and other
Java EE applications installed on the server:

$ $GLASSFISH_HOME\bin\asadmin create-jdbc-resource --
connectionpoolid \
 jdbc/rails_db jdbc/rails_db
Command create-jdbc-resource executed successfully.

2.12.4. See Also

• Section 2.13"

2.13. Using the GlassFish v3 Gem

2.13.1. Problem

You want to run a Rails application with the GlassFish v3 gem.

2.13.2. Solution

First, install the GlassFish v3 gem:

$ jruby –S gem install glassfish
 Successfully installed glassfish-0.1.2-universal-java
 1 gem installed

Start your Rails application with the new glassfish_rails command.
You currently have to start the server in the directory that contains your
Rails application directory:[4]

[4] It is likely this will be changed in future releases.

$ jruby -S glassfish_rails MyKillerApplication

Open your browser to http://localhost:3000 and you should see the Rails
welcome screen.

2.13.3. Discussion

The GlassFish v3 server is Sun's latest effort to build a widely adopted
Java EE server. They have packaged this server as a Ruby gem and
configured it to run Rails with a few simple commands.

The gem implements a pool of JRuby runtimes that work a lot like the
pooling used in the GoldSpike servlet. You can set the number of JRuby
runtimes in the pool by using the –n or the --runtimes flag when starting
the server. The following examples will start up servers with three
runtimes in each pool:

$ jruby –S glassfish_rails MyKillerApplication –n 3

or:

$ jruby –S glassfish_rails MyKillerApplication –-runtimes 3

2.13.4. See Also

• Section 2.12"

2.14. Using ActiveRecord Outside of Rails

2.14.1. Problem

You want to use ActiveRecord as the Object-Relational Mapping (ORM)
solution for a non-Rails application.

2.14.2. Solution

If you have not installed Rails, install the activerecord gem:

$ jruby -S gem install activerecord --no-ri --no-rdoc

Install the activerecord-jdbc-adapter gem, which will provide access
to the database through a JDBC connection:

$ jruby -S gem install activerecord-jdbc-adapter --no-ri --no-
rdoc

Include your database's JDBC adapter in your classpath or
JRuby lib folder if you're not using a database-specific adapter. For
example, to connect to a MySQL database, you will need
theactiverecord-jdbcmysql-adapter gem. See Section 2.2 for
more information about database-specific drivers and gems.

$ jruby -S gem install activerecord-jdbcmysql-adapter --no-ri --
no-rdoc

Create a YAML file called database.yml such as the one in Example 2-
10 to define your database connection parameters.

Example 2-10. Sample database.yml file
development:
 adapter: jdbcmysql
 database: jrubycookbook_development
 host: localhost
 port: 3306
 username: root
 password: password

Once this setup is in place, you can load the file and establish a
connection to one of the databases defined in it. In Example 2-11, we
load the development database defined in the configuration file
from Example 2-10. Once the database connection has been established,
we run a query and iterate through the results. Finally, we utilize one of
the dynamic finder methods that are attached to objects by the
ActiveRecord framework.

Example 2-11. Loading a database.yml file and accessing the
database
require 'rubygems'
gem 'activerecord-jdbcmysql-adapter'
require 'active_record'
require 'yaml'

@connections = YAML.load_file("database.yml")
ActiveRecord::Base.establish_connection(@connections["development
"])

stmt = "select id, title from games"
@val = ActiveRecord::Base.connection.select_all(stmt)
@val.each do |g|
 puts "game id: #{g["id"]} #{g["title"]}"
end

class Game < ActiveRecord::Base
end

puts "found game id: #{Game.find(1).id}"

This is the output of the program:

$ jruby games.rb
game id: 1 Alien Invasion
looking up game id: 1

2.14.3. Discussion

JRuby's jirb interactive console is a wonderful environment to prototype
and test application code. Running jirb with our example program gives
you an interactive session with the database (Figure 2-3).

Figure 2-3. jirb session using ActiveRecord and a JDBC
connection

2.15. Accessing Common Java Servlet
Information

2.15.1. Problem

You want to access the Java servlet request object from your Rails
controllers.

2.15.2. Solution

JRuby-Rack's servlet filter makes several servlet variables available to the
Rails application on each incoming request. Access the
standard javax.servlet.ServletRequest through the Rack environment
map with the key java.servlet_request. The ServletContext object
can also be fetched through the Rack environment hash with
the java.s⁠e⁠r⁠v⁠let_context key, or through the global
variable, $servlet_context. Example 2-12 shows a controller that uses
some of these variables.

Example 2-12. Accessing the Java servlet objects from a Rails
controller
class HelloWorldController < ApplicationController
 def hello
 ctx = request.env['java.servlet_context']
 puts "server info: #{ctx.server_info}"
 puts "server info: #{$servlet_context.server_info}"

 req = request.env['java.servlet_request']
 puts "uri: #{req.request_uri}"
 puts "query string: #{req.query_string}"
 puts "port: #{req.server_port}"
 puts "param hello: #{req.get_parameter("hello")}"
 puts "session id: #{req.get_session.id}"
 end
end

Accessing http://localhost:3000/MyKillerApplication/hello?hello=world wo
uld output these messages to the container's log file:

server info: jetty-6.1.9
server info: jetty-6.1.9
uri: /hello_world/hello
query string: hello=world
port: 3000
param hello: world
session id: 2026

2.15.3. Discussion

JRuby-Rack does not provide access to the ServletResponse object from
within your controller. This feature was available in earlier versions of
Warbler through the GoldSpike servlet but has been removed after the
integration of JRuby-Rack.

2.15.4. See Also

• Section 2.5"

2.16. Configuring Session Storage

2.16.1. Problem

You want to configure the session storage mechanism used by your Rails
application.

2.16.2. Solution

Edit the web.xml file in your web application and set
the jruby.session_store context parameter to db by adding this bit of
code:

<context-param>
 <param-name>jruby.session_store</param-name>
 <param-value>db</param-value>
 <!-- This value really means let Rails take care of
session store -->
</context-param>

2.16.3. Discussion

By default, JRuby-Rack's servlet filter uses the Java EE servlet container's
session storage. Changing the jruby.session_store context parameter
to db tells JRuby-Rack to defer to Rails's session management.

2.16.4. See Also

• Section 2.3"

2.17. Controlling the Classes, Directories,
and Other Files Packaged into a Rails WAR
File

2.17.1. Problem

There are classes and other files you want to include and/or exclude from
your WAR file.

2.17.2. Solution

Open the Warbler configuration file config/warbler.rb and validate these
configuration options:

Application directories to be included in the webapp.
config.dirs = %w(app config lib log vendor tmp)

Additional files/directories to include, above those in
config.dirs
config.includes = FileList["db"]

Additional files/directories to exclude
config.excludes = FileList["lib/tasks/*"]

Additional Java .jar files to include. Note that if .jar files
are placed
in lib (and not otherwise excluded) then they need not be
mentioned here
JRuby and JRuby-Rack are pre-loaded in this list.
Be sure to include your own versions if you directly set the
value
config.java_libs += FileList["lib/java/*.jar"]

Loose Java classes and miscellaneous files to be placed in WEB-
INF/classes.
config.java_classes = FileList["target/classes/**.*"]

One or more pathmaps defining how the java classes should be
copied into
WEB-INF/classes. The example pathmap below accompanies the
java_classes
configuration above. See
http://rake.rubyforge.org/classes/String.html#M000017
for details of how to specify a pathmap.
config.pathmaps.java_classes << "%{target/classes/,}"

2.17.3. Discussion

By default, Warbler will include the JRuby runtime and JRuby-Rack in the
WAR files it produces. There are some cases where you might prefer to
install these JARs in a shared library area rather than packaging the JAR
files with each web application. The shared packaging approach can
accomplish this, but some developers may want a mixed approach, in
which the packaged WAR file includes dependent gems but not the JRuby
runtime and the JRuby-Rack servlet. The config.java_libs property
is simply a Ruby array, so you can use well-known array operations to
exclude items from Warbler's build process. For example, you can use
the reject! method with a regular expression to exclude all versions of
JRuby and JRuby-Rack from the final WAR file:

config.java_libs.reject! {|lib| lib =~ /jruby-complete|jruby-
rack/ }

If you're changing these configuration values, it is recommended that you
run Warbler's war:clean task between builds to prevent files from being
accidentally included into your WAR. This is especially the case if you are
experimenting with the exclusion rules.

2.17.4. See Also

• Section 2.3"

2.18. Changing the Name of the WAR File
and the Staging Area

2.18.1. Problem

You want to change the name of the WAR file and/or Warbler's staging
area.

2.18.2. Solution

By default, Warbler will name the generated WAR file according to the
Rails application's directory name. You can customize the name by setting

the config.war_name parameter in yourconfig/warbler.rb configuration
file:

Name of the war file (without the .war) -- defaults to the
basename
of RAILS_ROOT
config.war_name = "mywar"

You may also want to modify the staging folder that contains the
decompressed source files for the final WAR. In warbler.rb, set
the config.staging_dir to your target staging folder:

Temporary directory where the application is staged
config.staging_dir = "tmp/war"

2.18.3. See Also

• Section 2.3"
• Section 2.19"

2.19. Deploying a Rails Application to the
Root Context

2.19.1. Problem

You want to make your Java EE web application available from the root
context of the servlet container.

2.19.2. Solution

In general, the simplest approach is to package your Rails application
with the name ROOT.war. This can be configured using the Warbler
configuration file, warble.rb:

config.war_name = "ROOT"

Before deploying this WAR file, be sure to remove any existing directories
named ROOT or ROOT.war files from your container's deployment
directories.

2.19.3. Discussion

Although not actually part of the Java EE standard, using a filename
of ROOT.war to indicate to the servlet container that you want this
application to be deployed in the root context is a widely used convention.
Each container defines a custom deployment descriptor. We've seen
examples of these descriptors in previous recipes. If you are using JNDI
DataSources, you will need to modify the deployment descriptors to
match the context name.

2.19.3.1. Tomcat

Edit the context.xml file in the META-INF directory in your staging area
(see Section 2.8). Set the path and docBase attributes to / (Example 2-
13). Warbler does not create this file by default so you will have to create
it yourself and repackage the WAR.

Example 2-13. Changing the context path for a Tomcat
deployment

<Context path="/" docBase="/" debug="5" reloadable="true"
crossContext="true">

 <Resource name="jdbc/rails_db" auth="Container"
type="javax.sql.DataSource"
 maxActive="100" maxIdle="30" maxWait="10000"
 username="root" password="password"
 driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://localhost:3306/jrubycookbook_development?autoRe
connect=true"/>

</Context>

2.19.3.2. JBoss

Edit the jboss-web.xml file in the WEB-INF directory in your staging area
(see Section 2.9). Change the context-root value to / (Example 2-14).
Warbler does not create this file by default so you will have to create it
yourself and repackage the WAR.

Example 2-14. Changing the context path for a JBoss
deployment
<jboss-web>
 <context-root>/</context-root>
 <resource-ref>
 <res-ref-name>jdbc/rails_db</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <jndi-name>java:rails_db</jndi-name>
 </resource-ref>
</jboss-web>

2.19.3.3. Jetty

Edit the jetty-web.xml file in the WEB-INF directory in your staging area
(see Section 2.10). Add the configuration in Example 2-15. Warbler does
not create this file by default so you will have to create it yourself and
repackage the WAR.

Example 2-15. Changing the context path for a Jetty
deployment
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD
Configure//EN"
 "http://jetty.mortbay.org/configure.dtd">
<Configure class="org.mortbay.jetty.webapp.WebAppContext">
 <Set name="contextPath">/</Set>
</Configure>

No configuration changes are necessary to allow Jetty to find your JNDI
DataSource.

2.19.4. See Also

• Section 2.7"
• Section 2.8"
• Section 2.9"
• Section 2.18"

2.20. Creating a Rails Application with
Aptana Studio

2.20.1. Problem

You want to create a Rails application using Aptana Studio.

2.20.2. Solution

Download and install the Aptana Studio software from the Aptana
website, http://www.aptana.com/download. Open the Aptana start page

at Help Aptana Studio Start Page and scroll to the RadRails
information in the Plugins column. Click on the Install button on the start
page and complete the installation wizard. You can also install the plugin
by selecting the RadRails item in the Plugin Manager, located in a tab in
the bottom frame, and clicking on the installation icon. Both options are
shown in Figure 2-4.

Figure 2-4. Aptana Studio: RadRails installation options

Aptana is built on the Eclipse IDE platform. As a result, the solution
from Section 1.12 should be followed to set up the JRuby runtime and
other common Eclipse configuration options. Once configuration is
complete, choose the RadRails perspective by clicking on the new

RadRails icon or select Other RadRails in the perspectives menu in the
top right corner of the window. Create your new Rails application by

selecting File New Rails Project in the menu. Give the project a
name and choose your database platform from the available options. Click
Finish, and RadRails will generate the files for your Rails application,
which are shown in the left Rails File Explorer window. The default wizard
settings will also create and start a Mongrel server instance. The editor
should be displaying the Aptana welcome screen shown in Figure 2-5.
Open the Rails database configuration file at config/database.yml in the
left Explorer window and edit the values for your database. You can start
and stop your Mongrel server by navigating to the Servers tab found in

the bottom center window. Select your Rails application in the list and use
the controls to start the server in regular or debug mode.

Figure 2-5. RadRails Interface and Welcome screen

2.20.3. Discussion

The Rails Shell was introduced with RadRails version 1.0 and gives the
developer access to Rails commands through a command-line interface.
Choose the Console tab in the bottom panel or choose Open a Rails Shell
in the console options. The shell and the location of the options button are
shown in Figure 2-6. The Rails Shell complements the graphical interfaces
for performing common Rails tasks and brings the IDE more in line with
the Rails developers' preference of administering their application through
a shell interface. The Rails Shell allows you to execute generator scripts,
Rake tasks, and migrations, and create Rails projects and install gems
and plugins.

Figure 2-6. Aptana Rails Shell

2.20.4. See Also

• Section 1.12"

2.21. Accessing Static Files in Your Rails
Java EE Application

2.21.1. Problem

Warbler packages your Rails application by separating the static content
from the executable code and moving it into the top-level directory in the
WAR. This creates problems for some Rails functions such as render
:file because the file paths it is generating are now incorrect. You would
like your Rails application to serve static content in both a standard
deployment and when assembled using Warbler.

2.21.2. Solution

Add a hook into your Rails application by creating a public_dir.rb file in
the initializers directory. Evaluate the $servlet_context variable, which
is only set when running in a Java EE environment, and set the location of
the public directory based on the existence of the variable. Example 2-
16 shows a technique for toggling the public directory.

Example 2-16. Public directory detection code
PUBLIC_DIR = if defined?($servlet_context)
 $servlet_context.getRealPath('/')
 else
 "#{RAILS_ROOT}" + '/public'
 end

Replace all the calls in your Rails code from render :file =>
"/public/data/jobs.log" to render :file =>
"#{PUBLIC_DIR}/data/jobs.log".

2.21.3. Discussion

You will also need to patch Rails' internal functions that build paths to
static files. The render_optional_error_file in ActionController can
be patched by adding the code in Example 2-17 to your
Rails application.rb file. A new module with patched method is mixed into
the original ActionController module at runtime.

Example 2-17. Patching functions that serve static files
module Cookbook
 module PublicRescueExtensions
 protected
 def render_optional_error_file(status_code)
 status = interpret_status(status_code)
 path = "#{PUBLIC_DIR}/#{status[0,3]}.html"
 if File.exists?(path)
 render :file => path, :status => status
 else
 head status
 end
 end
 end
end
ActionController::Rescue.send :include,
 Cookbook::PublicRescueExtensions

2.21.4. See Also

• Section 2.3"

Chapter 3. Java Integration

Introduction

Executing Ruby from Java

Invoking JRuby Through the Bean Scripting Framework

Invoking JRuby Through Java Scripting Support

Logging from Ruby with Jakarta Commons Logging

Using the Java Concurrency Utilities

Creating JavaBean Style Accessor Methods

Writing Consistent Code

Transforming XML with TrAX

Creating a Pool of JRuby Runtimes

Performing Remote Management with JMX

Accessing Native Libraries with JRuby

3.1. Introduction

The first two chapters examined JRuby almost entirely from a Ruby-
centric perspective. In the next few chapters, we look at leveraging JRuby
more as a toolkit for Ruby and Java integration. There are two primary
integration approaches that we will explore in this chapter. The first is
how JRuby can be used to add functionality to a Java application; the
second is how Ruby programs can take advantage of the wide array
of preexisting Java libraries. Frequently, these types of integration are
combined. For example, when mixing Java and Ruby code, using a
consistent configuration for application logging can be useful, something
which is explored in Section 3.5.

There are three primary APIs for embedding Ruby into a Java application:

• The JRuby low-level API
• The Bean Scripting Framework (BSF)
• Java Scripting, defined by JSR 223

These APIs are the subject of the first three recipes in this chapter. The
differences between the low-level API and either BSF or Java Scripting are
fairly obvious—the low-level API ties your Java code directly to JRuby,
whereas both BSF and Java Scripting are abstractions of the JRuby
runtime and, in fact, support multiple scripting languages. In general, you
will use the JRuby API when you need tight control over the runtime's
configuration. The choice between BSF and Java Scripting is largely based
on deployment environment—BSF support is more consistent on Java 5,
whereas Java Scripting is only available as a backport.

Regardless of the mechanics, the value of using JRuby in this way
primarily stems from the fact that Ruby code is interpreted, not compiled.
This allows you to store Ruby code in a Java Stringobject and evaluate it
while your application is running. For example, a reporting application
could store the Ruby code necessary to generate a particular report in a
database. Another scenario would be to have an
application extensible through Ruby-based plugins that could be added or
removed while the application is running, something not typically
associated with Java applications. A similar technique has been used
extensively in gaming, most notably the popular, massive multiplayer
game World of Warcraft, which can be extended by users using the Lua
scripting language (even though the core is written in C++).[5]

[5] Obviously, great care must be taken when evaluating user-provided code in any
environment.

All of this power comes at a cost. The JRuby runtime, regardless of
whether you use the low-level API, BSF, or Java Scripting, is expensive to
create and operate. The creation expense relates to time: starting JRuby
can take thousands of milliseconds. The operational expense relates to
memory usage, most significantly in the permanent generation
(PermGen) memory space. The former issue can be mitigated using a
pool of runtimes, described in Section 3.9. The latter issue can usually be
resolved by ensuring that enough PermGen space is available by using
the -XX:PermSizecommand-line argument. Typically, a value of 256m is
adequate. Section 2.8 has some additional discussion of memory issues
with JRuby.

3.2. Executing Ruby from Java

3.2.1. Problem

You want to execute some Ruby code from a Java application.

3.2.2. Solution

Obtain an instance of org.jruby.Ruby and call
the evalScriptlet() method.
The org.jruby.javasupport.JavaEmbedUtils class provides static
factory methods for creating an instance of the JRuby runtime. Example
3-1 shows a simple usage of these classes.

Example 3-1. Calling Ruby from Java

package org.jrubycookbook.ch03;

import java.util.Collections;

import org.jruby.Ruby;
import org.jruby.javasupport.JavaEmbedUtils;

public class RubyRunner {

 public static void main(String[] args) {
 // Create an instance of the JRuby runtime. The parameter
to initalize()
 // is a list of paths to be added to the Ruby load path.
 Ruby runtime =
JavaEmbedUtils.initialize(Collections.EMPTY_LIST);
 runtime.evalScriptlet("puts 'hello world'");
 }

}

When run, this class outputs the classic greeting:

hello world

NOTE

Prior to JRuby 1.0.3, the method used to obtain instances of the JRuby
runtime was Ruby.getDefaultInstance(). Although this usage has been
deprecated, you may see it from time to time in code examples.

3.2.3. Discussion

Every execution of JavaEmbedUtils.initialize() will create a new
instance of the JRuby runtime. JRuby also provides a mechanism for
reuse of JRuby runtimes within a single Java thread. To enable this, set
the Java system property jruby.runtime.threadlocal to "true". If this
is set, calls to JavaEmbedUtils.initialize() will create a new instance
and store that instance in aThreadLocal variable. To access this instance,
call Ruby.getCurrentInstance(). Example 3-2 illustrates instance reuse
by setting and retrieving a global variable within the runtime.

Example 3-2. Using the current JRuby runtime

package org.jrubycookbook.ch03;

import java.util.Collections;

import org.jruby.Ruby;
import org.jruby.javasupport.JavaEmbedUtils;

public class RubyRunner2 {

 public static void main(String[] args) {
 // Enable ThreadLocal support
 System.setProperty("jruby.runtime.threadlocal", "true");
 // Create a JRuby instance
 Ruby runtime =
JavaEmbedUtils.initialize(Collections.EMPTY_LIST);
 // Execute a bit of Ruby code that creates a variable
 runtime.evalScriptlet("$message = 'hello world from
JRuby'");
 runtime.evalScriptlet("$counter = 0");
 for (int i = 0; i < 5; i++) {
 outputMessage();
 }
 }

 private static void outputMessage() {
 Ruby runtime = Ruby.getCurrentInstance();
 String scriptlet = "puts \"<#{$counter}> #{$message}\"";
 runtime.evalScriptlet("$counter = $counter.next");
 runtime.evalScriptlet(scriptlet);
 }
}

When run, this class produces the following output:

<1> hello world from JRuby
<2> hello world from JRuby
<3> hello world from JRuby
<4> hello world from JRuby
<5> hello world from JRuby

Using the Ruby class, it is also possible to generate new instances of
common JRuby classes and pass those instances to the JRuby runtime so
that executed scripts can use them. The main()method from Example 3-
2 could be rewritten using these methods like this:

public static void main(String[] args) {
 System.setProperty("jruby.runtime.threadlocal", "true");
 Ruby runtime = getOrCreateInstance();
 RubyString message = runtime.newString("hello world");
 runtime.getGlobalVariables().set("$message", message);
 for (int i = 0; i < 5; i++) {
 outputMessage(i + 1);
 }
 }

JRuby runtimes have a load path based on the value of
the jruby.home system property. The default load path elements for
JRuby 1.1 are:

1. jruby.home/lib/ruby/site_ruby/1.8
2. jruby.home/lib/ruby/site_ruby
3. jruby.home/lib/ruby/1.8
4. jruby.home/lib/ruby/1.8/java
5. lib/ruby/1.8 (relative to the current working directory)
6. . (the current working directory)

When you use the jruby executable as described in Chapter 1,
the jruby.home system property is set automatically based on
the JRUBY_HOME environment variable. When writing Java applications
that use JRuby, it's necessary to set this system property manually. You
can set this system property using the -D command-line option:

java -cp bin:/opt/java/jruby-1.1/lib/jruby.jar\
-Djruby.home=/opt/java/jruby-1.1
org.jrubycookbook.ch03.RubyRunner

This system property can also be set by an IDE when running your
application, such as the Eclipse Run... dialog seen in Figure 3-1, or a build
script such as the Ant build script seen in Example 3-3.

Figure 3-1. Setting the jruby.home system property with
Eclipse

Example 3-3. Setting the jruby.home system property with
Apache Ant
<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="run">
 <property name="jruby.home" value="/opt/java/jruby-1.1"/>

 <target name="run">
 <java classname="org.jrubycookbook.ch03.RubyRunner4"
fork="true">
 <classpath>
 <pathelement location="bin"/>
 <pathelement
location="${jruby.home}/lib/jruby.jar"/>
 </classpath>
 <sysproperty key="jruby.home" value="${jruby.home}"/>
 </java>
 </target>
</project>

If you have the JRUBY_HOME environment variable set, you may also be
able to obtain this value by calling System.getenv() and using the value
of the environment variable to set thejruby.home system property:

System.setProperty("jruby.home", System.getenv("JRUBY_HOME"));

As noted in the comments in Example 3-1, the initialize() method
of JavaE⁠m⁠bedU⁠t⁠i⁠l⁠s accepts a list of paths that will be prepended
to the default load path described earlier.

3.2.4. See Also

• Section 3.3"
• Section 3.4"

3.3. Invoking JRuby Through the Bean
Scripting Framework

3.3.1. Problem

You want to execute some Ruby code from a Java application and want
the flexibility to support multiple scripting language implementations.

3.3.2. Solution

Use the Bean Scripting Framework (BSF):

1. Add bsf.jar, included with JRuby distributions, to your Java
classpath.

2. Register the JRuby scripting engine with the BSF runtime.
3. Create an instance of the org.apache.bsf.BSFManager class.
4. Call the eval() or exec() method on the BSFManager object.

Example 3-4 shows a simple usage of JRuby through BSF.

Example 3-4. Invoking JRuby with BSF
package org.jrubycookbook.ch03;

import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;

public class RubyBSFRunner {

 public static void main(String[] args) throws BSFException {
 BSFManager.registerScriptingEngine("ruby",
 "org.jruby.javasupport.bsf.JRubyEngine", new
String[] { "rb" });
 BSFManager manager = new BSFManager();
 manager.exec("ruby", "<script>", 1, 1, "puts 'hello
world'");
 }

}

3.3.3. Discussion

The Bean Scripting Framework is an open source software framework
originally developed by IBM that is now part of the Apache Jakarta
project. It provides a generic application programming interface (API) for

supporting scripting languages within Java applications. BSF comes with
built-in support for several scripting languages, including:

• JavaScript
• NetRexx
• Python
• Tcl
• XSLT

In addition to these languages, the Bean Scripting Framework defines a
service provider interface (SPI) that allows other scripting languages to
be plugged in by implementing
theorg.apache.bsf.BSFE⁠n⁠gine interface. JRuby provides an
implementation of this interface with the
class org.jruby.javasupport.bsf.JRubyEngine. As you can see
in Example 3-4, it is necessary to register this class with BSF by
calling BSFManager.registerScriptingEngine(). When registering this
engine implementation (or any other), you have to provide BSF with both
the name of the scripting language (ruby) and a list of possible file
extensions (rb). BSFManager provides two methods for invoking a
scripting language: eval() and exec(). The difference between these two
methods is that eval() is expected to return a value, whereas exec() is
not. Both methods accept the name of the scripting engine to be invoked
and some information used for errorreporting and debugging: a source
name (e.g., the filename when a script is loaded from a file), a line
number, and a column number. Finally, the last parameter to both
methods is the script content itself.

BSF provides a mechanism to expose Java objects to scripts. This is done
using the declareBean() method of the BSFManager class. For JRuby,
Java objects are made available as global variables within the JRuby
runtime. Example 3-5 shows this functionality in use. Note that the
variable name passed to declareBean() does not have the $ prefix, while
the reference to this variable from Ruby code does. The $ prefix is
automatically added to the variable name. This avoids adding Ruby-
specific names into your code, thereby enabling you to more easily mix
multiple scripting languages in the same application.

Example 3-5. Using declareBean()
package org.jrubycookbook.ch03;

import org.apache.bsf.BSFException;
import org.apache.bsf.BSFManager;

public class RubyBSFRunner2 {

 public static void main(String[] args) throws BSFException {
 BSFManager.registerScriptingEngine("ruby",
 "org.jruby.javasupport.bsf.JRubyEngine", new
String[] { "rb" });
 BSFManager manager = new BSFManager();
 manager.declareBean("message", "hello world",
String.class);
 manager.exec("ruby", "<script>", 1, 1, "puts $message");
 }

}

The BSF website, http://jakarta.apache.org/bsf, contains a variety of
additional documentation about using BSF.

3.3.4. See Also

• Section 3.2"
• Section 3.4"

3.4. Invoking JRuby Through Java Scripting
Support

3.4.1. Problem

You are running Java 6 (or later), and you want to execute some Ruby
code from a Java application and want the flexibility to support multiple
scripting language implementations.

3.4.2. Solution

Use Java's built-in scripting framework, defined in JSR (Java Specification
Request) 223:

1. Download jsr223-engines.zip from https://scripting.dev.java.net.

2. Unzip the file jruby/build/jruby-engine.jar from jsr223-
engines.zip and add it to your classpath.

3. Create an instance of javax.script.ScriptEngineManager.
4. Call getEngineByName("ruby") to obtain an instance

of javax.script.ScriptEngine.
5. Call the eval() method on the ScriptEngine object.

Example 3-6 shows a simple usage of JRuby using the JSR 223 API.

Example 3-6. Invoking JRuby through
javax.script.ScriptEngineManager
package org.jrubycookbook.ch03;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class Ruby223Runner {

 public static void main(String[] args) throws ScriptException
{
 ScriptEngineManager scriptManager = new
ScriptEngineManager();
 ScriptEngine engine =
scriptManager.getEngineByName("ruby");
 engine.eval("puts 'hello world'");
 }

}

3.4.3. Discussion

JSR 223: Scripting for the Java Platform was one of the more highly
anticipated upgrades to the Java platform in the Java 6 release. At the
simplest level, it provides a standardized version of the API (and SPI) that
the Bean Scripting Framework (BSF) had provided for many years. Almost
more importantly, however, is the message that JSR 223 sends to the
programming community as a whole by formalizing the distinction
between Java the language and Java the platform. JSR 223's mere
existence suggests that the Java platform will provide a suitable runtime
environment for a variety of scripting languages, including Ruby/JRuby.

As you can see by comparing Example 3-6 with Example 3-4, the JSR 223
API is simpler to use than the BSF API in that proactive registration of
scripting engines is not required. JSR 223 defines a discovery mechanism

that allows script engines to be automatically discovered based on the
existence of a file in the META-INF directory. When a script engine is
discovered, the scripting runtime queries it for a number of attributes,
including the file extensions typically associated with the engine and one
or more names by which the script engine will be identified. In the case of
JRuby, the script engine is registered with the names ruby and jruby and
the file extension rb. Thus, any of these will return the JRuby engine:

scriptManager.getEngineByName("ruby");
scriptManager.getEngineByName("jruby");
scriptManager.getEngineByExtension("rb");

As with the native JRuby interface and BSF, the JSR 223 API provides a
mechanism to pass Java objects into the scripting engine. In the case of
JRuby, these objects become global variables in the JRuby
runtime. Example 3-7 shows this functionality in action.

Example 3-7. Creating a global variable with JSR 223
package org.jrubycookbook.ch03;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class Ruby223Runner2 {

 public static void main(String[] args) throws ScriptException
{
 ScriptEngineManager scriptManager = new
ScriptEngineManager();
 ScriptEngine engine =
scriptManager.getEngineByName("ruby");
 engine.put("message", "hello world");
 engine.eval("puts $message");
 }

}

As with BSF, the $ variable prefix indicating a global Ruby variable is
automatically prepended to the variable name.

Why Use BSF?

As you can see from these last two recipes, BSF and Java Scripting
provide basically equivalent functionality. New applications are strongly
advised to leverage the Java Scripting interface instead of BSF. That
said, there are some reasons for using BSF instead of Java Scripting.

The most significant reason is Java 5 compatibility. A JAR file containing
the core Java Scripting interfaces is available as a download for Java 5
environments
fromhttp://jcp.org/aboutJava/communityprocess/final/jsr223/index.html;
the JRuby engine, however, requires Java 6.[6] So if you are running Java
5, using Java Scripting to interface with JRuby simply is not an option.

A secondary advantage to BSF is that the BSF JRuby engine is included
with the JRuby distribution. This means that the BSF engine is
guaranteed to work with the version of JRuby you are using. During the
development cycle leading up to the release of JRuby 1.1, the native
JRuby interface changed significantly several times and broke the
existing Java Scripting engine.[7]

Finally, for applications that use BSF already and are simply looking to
add support for Ruby as an additional scripting language, continuing to
use BSF is a logical course of action.

[6] There is an open issue for this in the JSR223 engine
project, https://scripting.dev.java.net/issues/show_bug.cgi?id=28.

[7] In fact, at the time of writing, the JRuby engine in jsr223-engines.zip and jsr223-
engines.tar.gz does not work with JRuby 1.1. A compatible engine (version 1.1.2) is available
fromhttps://scripting.dev.java.net/servlets/ProjectDocumentList?folderID=8848&expandFolder
=8848&folderID=8847.

3.4.4. See Also

• Section 3.2"
• Section 3.3"

3.5. Logging from Ruby with Jakarta
Commons Logging

3.5.1. Problem

You are running Ruby code within a Java application that uses Jakarta
Commons Logging (JCL) and wish your log messages to be consistent.

3.5.2. Solution

Use a class like the one in Example 3-8 to transform fully qualified Ruby
class names into identifiers that resemble fully qualified Java class names.

Example 3-8. Custom JRuby LogFactory bridge class
package org.jrubycookbook.ch03;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import org.jruby.RubyObject;

public class JRubyLogFactory {
 public static Log getLog(RubyObject o) {
 String rubyClassName = o.getMetaClass().getName();
 String logName = rubyClassName.replace("::", ".");
 return LogFactory.getLog(logName);
 }
}

Once this is in place, you can reference this class in your Ruby code and
create new Log objects by passing self to the getLog() method. Log
messages will be logged under a log name derived from the fully qualified
Ruby class name. The script in Example 3-9 will log a message under the
log name Log.LogTest.

Example 3-9. Using the JRubyLogFactory bridge class
include Java

import org.jrubycookbook.ch03.JRubyLogFactory

module Log
 class LogTest
 def initialize
 @log = JRubyLogFactory.getLog(self)
 end

 def hello
 @log.info("hello via jcl")
 end
 end
end

Log::LogTest.new.hello

3.5.3. Discussion

Jakarta Commons Logging is a popular Java library for providing a
consistent logging API across several logging implementations, including
Log4J, the java.util.logging package, LogKit, and JCL's own
SimpleLog. JCL is especially popular amongst library developers as it
allows the library to work with several logging implementations without
having a compile-time dependency to any of them. Java code will typically
obtain an implementation of
the org.apache.commons.logging.Log interface by calling one of two
factory methods:

• LogFactory.getLog(Class)
• LogFactory.getLog(String)

The former calls the latter passing the fully qualified class name. As many
logging packages allow you to configure logging using a hierarchal model,
i.e., all logs whose names begin withorg.apache.commons log to a
particular file, the class name has become a useful source of log names.

There are two reasons to write a bridge class such as that in Example 3-
8. First, with JRuby, Ruby classes are not Java classes, so this code will
fail:

@log = org.apache.commons.logging.LogFactory.getLog(self.class)

Second, although you could obtain the class name with code such as:

@log =
org.apache.commons.logging.LogFactory.getLog(self.class.name)

The log name will have colons rather than the expected periods and
logging implementations that were written with Java packages in mind
will not recognize log names for classes in the same module as being
related. Whether this will be a major issue depends upon how much
logging your code is doing and how many individual classes you have.

You may have noticed that in Examples Example 3-8 and Example 3-9,
the getLog() method accepts an instance of org.jruby.RubyObject.
This could have been written to accept an instance
of org.jruby.RubyClass and then referenced from Ruby code like this:

@log = JRubyLogFactory.getLog(self.class)

However, this is more verbose and has more potential to result in a
variance in log names. The point of this exercise is to have consistent log
names; encapsulating the logic for generating a log name from a Ruby
object seems to make more sense. If you needed to have a nonstandard
log name, you could always go back to the
original LogFactory.getLog() method:

@log = org.apache.commons.logging.LogFactory.getLog("Some Other
Log Name")

3.6. Using the Java Concurrency Utilities

3.6.1. Problem

You want to use the classes in the java.util.concurrent package to
write code that is both thread-safe and highly performant.

3.6.2. Solution

Simply reference the classes in your Ruby code. For example, to create
an instance of java.util.concurrent.ConcurrentHashMap, just use the
constructor:

$hash = java.util.concurrent.ConcurrentHashMap.new

Likewise, the java.util.concurrent.Executors factory class can be
used to create powerful yet easy-to-use thread pools. In Example 3-10, a
thread pool containing two threads is created and used from Ruby code.

Example 3-10. Using a java.util.concurrent thread pool from
Ruby
include Java

class MyLongTask
 include java.util.concurrent.Callable

 def initialize(label)
 @label = label
 end

 def call
 puts "about to sleep in task labeled #{@label}\n"
 # artificially create a longer delay
 sleep 5
 puts "done sleeping in task labeled #{@label}\n"
 return "result of the long task labeled #{@label}\n"
 end
end

create a new thread pool
executor = java.util.concurrent.Executors::newFixedThreadPool(2)

create an array to store the future value references
future = Array.new

puts "submitting first task"
future[0] = executor.submit(MyLongTask.new("first"))

puts "submitting second task"
future[1] = executor.submit(MyLongTask.new("second"))

puts "submitting third task"
future[2] = executor.submit(MyLongTask.new("third"))

puts "All tasks have been submitted"

this method call will block until the first task has completed
puts future[0].get()

this method call will block until the second task has completed
puts future[1].get()

this method call will block until the third task has completed
puts future[2].get()

The exact output of this code may vary slightly from execution to
execution, but in general you will see all three tasks being submitted,
followed by the first two tasks starting to sleep. Eventually, those tasks
will complete and the third will start. However, since there are multiple
threads, the first two tasks may be completed in any order, as seen here:

submitting first task
submitting second task
about to sleep in task labeled first
submitting third task
about to sleep in task labeled second
All tasks have been submitted
done sleeping in task labeled second
done sleeping in task labeled first
result of the long task labeled first
about to sleep in task labeled third
result of the long task labeled second
done sleeping in task labeled third
result of the long task labeled third

3.6.3. Discussion

When the JRuby runtime creates Ruby proxy objects for Java collection
classes, it adds a variety of utility methods found in the corresponding
Ruby collection class. This enables Java collection classes, including the
concurrency-optimized classes in the java.util.concurrent packages to
be treated like Ruby collections in some, but not all, cases. For example,
when used from
JRuby,java.util.concurrent.ConcurrentHashMap instances have
an each method that behaves just like the each method from the
Ruby Hash class, as seen in Example 3-11.

Example 3-11. Using a ConcurrentHashMap like a Hash
include Java
import java.util.concurrent.ConcurrentHashMap

states = ConcurrentHashMap.new
states['NY'] = 'New York'
states['ND'] = 'North Dakota'

states.each do |key,value|
 puts "The abbreviation for #{value} is #{key}."
end

Similar methods are added to instances
of java.util.List and java.util.Set. However, you cannot use the
Ruby instance_of? method to check if these objects are instances of the
corresponding Ruby collection class. Instead, you can use
the respond_to? method to check the availability of individual methods:

irb(main):001:0>
java.util.concurrent.CopyOnWriteArrayList.new.respond_to? 'each'
=> true

3.7. Creating JavaBean Style Accessor
Methods

3.7.1. Problem

Ruby developers use the attr_accessor function as a convenient way to
declare instance variables and create read and write methods in a class.
You would like a similar function that can add JavaBean-
style get and set methods to a class with a condensed
and declarative syntax.

3.7.2. Solution

Start by creating a Ruby module that will contain the new method. The
function can be coded directly into your classes, but the module
encourages more reusable and less repetitive code. Create a method
called java_attr_accessor that accepts a list of symbols, consistent with
Ruby's attr_accessor method. The symbols are named with the Ruby
style of using underscores as word delimiters, but the function will
convert each symbol into the JavaBean-style equivalent name by adding
the get and set prefixes to the camel case representation of the
name. Example 3-12shows the module and a class that adds several
instance variables using the java_attr_accessor method after extending
the new module.

Example 3-12. Helper module for JavaBean accessors
module Helper
 def java_attr_accessor(*symbols)
 symbols.each { |symbol|
 camelcased = symbol.to_s.capitalize.gsub(/_[a-zA-Z]/) {|s|
s[1..1].upcase}
 module_eval("def get#{camelcased}() @#{symbol}; end")
 module_eval("def set#{camelcased}(val) @#{symbol} = val;
end")
 }
 end
end

class Example
 extend Helper
 java_attr_accessor :title,:first_name
end

mc = Example.new
mc.setTitle('Cookbook')
mc.setFirstName("John")

3.7.3. Discussion

This utility function can be very useful when working with applications or
frameworks that make heavy use of JavaBeans, such as Hibernate and
Spring.

3.8. Writing Consistent Code

3.8.1. Problem

You are calling both Ruby and Java libraries from Ruby and want the code
to look consistent. This line from Example 3-9 is very obviously calling a
Java method:

@log = JRubyLogFactory.getLog(self)

3.8.2. Solution

Replace camel-cased method names with method names that follow the
Ruby naming convention: all lowercase letters and underscores for word

separators. The line from Example 3-9referenced above could be
rewritten as:

@log = JRubyLogFactory.get_log(self)

JRuby provides this automatic method translation as a way of blending
Java and Ruby method calls together.

3.8.3. Discussion

JRuby won't override an existing method. If there was an actual method
named get_log(), it takes precedence. That caveat aside, using this
feature leads to a more consistent coding style.

3.9. Transforming XML with TrAX

3.9.1. Problem

You want to transform XML documents using XSLT through Java's
Transformation API for XML (TrAX).

3.9.2. Solution

Import the class javax.xml.transform.TransformerFactory as well as
the classes to be used for the input and output,
typically javax.xml.transform.stream.StreamSource andjavax.xml.tr
ansform.stream.StreamResult. If you will be transforming with the
same stylesheet repeatedly, create
a javax.xml.transform.Templates object to save
the compiled stylesheet. If this is a one-time transformation, simply
create a javax.xml.t⁠r⁠a⁠n⁠s⁠f⁠o⁠r⁠m.Transformer object. Example
3-13 shows both scenarios.

Example 3-13. Using TrAX from JRuby
include Java

import javax.xml.transform.TransformerFactory
import javax.xml.transform.stream.StreamResult
import javax.xml.transform.stream.StreamSource

Create a new TransformerFactory instance
factory = TransformerFactory.new_instance

Compile a stylesheet into a Template object
style_input = StreamSource.new("rss.xslt")
templates = factory.new_templates(style_input)

Setup sources for input and output
input =
StreamSource.new("http://www.mtv.com/rss/news/news_full.jhtml")
output = StreamResult.new(java.lang.System.out)

Create a new Transformer from the Template object
transformer = templates.new_transformer

Do the transformation
transformer.transform(input, output)

Simplified – just create a new Transformer from the stylesheet
transformer = factory.new_transformer(style_input)
transformer.transform(input, output)

3.9.3. Discussion

TrAX includes a few interfaces that can be easily implemented in Ruby to
customize the transformation process. The
interface javax.xml.transform.ErrorListener receives callbacks from
theTransformer object whenever a warning or error is
encountered. Example 3-14 shows a simple implementation of this
interface in Ruby.

Example 3-14. Implementing javax.xml.transform.ErrorListener
in Ruby
class ErrorCounter
 attr_reader :errors
 attr_reader :warnings
 attr_reader :fatals

 def error(ex)
 @errors = 0 if (@errors == nil)
 @errors = @errors + 1
 end

 def warning(ex)
 @warnings = 0 if (@warnings == nil)
 @warnings = @warnings + 1
 end

 def fatalError(ex)
 @fatals = 0 if (@fatals == nil)
 @fatals = @fatals + 1
 end
end

Use the ErrorCounter class
counter = ErrorCounter.new
transformer = factory.new_transformer(style_input)
transformer.error_listener = counter
transformer.transform(input, output)

p "Errors: #{counter.errors}"

Another TrAX interface of note is javax.xml.transform.URIResolver,
which allows you to intercept references made from a stylesheet to
external resources. The URIResolver implementation inExample 3-
15 shows a simple usage of this interface to intercept a relative reference
for a stylesheet. This interception was done whether rss.xslt was
referenced using the XSLT document()function, xsl:import,
or xsl:include. For any other URI, the resolve method will return nil,
meaning that the Transformer should resolve the URI itself.

Example 3-15. Implementing javax.xml.transform.URIResolver
in Ruby
class MySiteResolver
 def resolve(href,base)
 if (href == 'rss.xslt')
 return StreamSource.new('http://www.mysite.com/rss.xslt')
 end
 end
end

3.10. Creating a Pool of JRuby Runtimes

3.10.1. Problem

You need to execute Ruby code that is not thread-safe and requires
exclusive control of the JRuby runtime and do not want to create new
runtimes per thread.

3.10.2. Solution

Use the Jakarta Commons Pool library to create a pool of JRuby runtimes.
When your code needs to invoke JRuby, borrow a runtime from the pool
and return it when finished. To start, download Jakarta Commons Pool
from http://jakarta.apache.org/commons/pool/ and add the JAR file to
your classpath. Create a subclass
of org.apache.commons.pool.BasePoolableObjectFactory that creates
JRuby runtimes using the methods described in Section 3.2. Then use this
factory object to construct
an org.apache.commons.pool.impl.GenericObjectPool. Example 3-
16 shows a subclass of GenericObjectPool built for pooling JRuby
runtimes.

Example 3-16. Creating a pool of JRuby runtimes
package org.jrubycookbook.ch03;

import java.util.Collections;
import java.util.Date;

import org.apache.commons.pool.BasePoolableObjectFactory;
import org.apache.commons.pool.impl.GenericObjectPool;
import org.jruby.Ruby;
import org.jruby.javasupport.JavaEmbedUtils;

public class JRubyRuntimePool extends GenericObjectPool {

 private static class JRubyRuntimeFactory extends
BasePoolableObjectFactory {

 public Object makeObject() throws Exception {
 Ruby runtime =
JavaEmbedUtils.initialize(Collections.EMPTY_LIST);
 return runtime;
 }

 }

 public JRubyRuntimePool() {
 super(new JRubyRuntimeFactory());
 }

 public Ruby borrowRuntime() throws Exception {
 return (Ruby) borrowObject();
 }

 public void returnRuntime(Ruby runtime) throws Exception {
 returnObject(runtime);
 }

 public static void main(String[] args) throws Exception {
 JRubyRuntimePool pool = new JRubyRuntimePool();
 // always have a minimum of five runtimes available in
the pool.
 pool.setMinIdle(5);

 // if there are more than 10 runtimes in the pool, remove
the extras
 pool.setMaxIdle(10);

 // and don't allow more than 40 runtimes to be in use at
the same time
 pool.setMaxActive(40);

 // check every minute that the minimum and maximum idle
counts are met
 pool.setTimeBetweenEvictionRunsMillis(60000);

 // start the application
 }
}

3.10.3. Discussion

The GenericObjectPool class has a variety of configuration parameters,
including:

maxActive

The maximum number of objects that can be borrowed from the
pool at one time. Can be unlimited. The default is 8.

maxIdle

The maximum number of objects that can sit idle in the pool at
any time. Can be unlimited. The default is 8.

minIdle

The minimum number of objects that will be idle in the pool. If
the pool drops below this threshold
(and timeBetweenEvictionRunsMills is greater than zero, see
below), new instances will be created. The default is 0.

whenExhaustedAction

Specifies the behavior of the pool when the pool is empty and a
request to borrow an object is received. Can be to fail (throw
a java.util.NoSuchElementException), grow, or to block. Defaults
to block.

timeBetweenEvictionRunsMills

Defines the time delay between runs of an asynchronous task
that enforces that the maxIdle and minIdle properties. By default,
this task is disabled.

Because the JRuby runtime is time-consuming to create, be sure to use
the minIdle and the timeBetweenEvictionRunsMills properties.

3.10.4. See Also

• The Jakarta Commons Pool
website, http://commons.apache.org/pool/

• http://jruby-extras.rubyforge.org/svn/trunk/rails-integration/,
GoldSpike source code

3.11. Performing Remote Management with
JMX

3.11.1. Problem

You want to write a client using Java Management Extensions (JMX) in
Ruby to manage a remote Java application.

3.11.2. Solution

Use the jmx4r Ruby gem. This library significantly simplifies use of the
JMX API. To install jmx4r:

jruby –S gem install jmx4r

To establish a connection with a JMX service, use
the establish_connection class method:

JMX::MBean.establish_connection :host => "localhost", :port =>
1099

To find an MBean by name, use the find_by_name class method:

os = JMX::MBean.find_by_name "java.lang:type=OperatingSystem"

The find_by_name method returns a dynamic object based around the
MBean interface. In the case of the MBean
named java.lang:type=OperatingSystem, the Java Virtual Machine
exposes an MBean with several attributes about the underlying operating
system. These JMX attributes can be simply accessed as properties. For
example, to output the number of available processors:

p "Running with #{os.available_processors} processors."

NOTE

The actual attribute name is AvailableProcessors. The jmx4r library
converts this name into a more Ruby-like form.

Similarly, JMX operations are invoked as method calls. For example, to
force a garbage collection:

memory = JMX::MBean.find_by_name "java.lang:type=Memory"
memory.gc

3.11.3. Discussion

The jmx4r library also supports the ability to query for MBeans. Example
3-17 shows this functionality in action. In this example, JMX is used to
discover the available JMS queues in an Apache ActiveMQ JMS server.

Example 3-17. Querying MBeans
include Java

require 'rubygems'
gem 'jmx4r'
require 'jmx4r'

JMX::MBean.establish_connection :host => "localhost", :port =>
1099

queues = JMX::MBean.find_all_by_name \
 "org.apache.activemq:BrokerName=localhost,Type=Queue,*"

queues.each do |queue|
 p "Queue #{queue.name} contains #{queue.queue_size} queued
messages."
end

Depending on the available queues, the output might be similar to this:

Queue LogQueue contains 25 queued messages.
Queue OrderQueue contains 5 queued messages.

3.11.4. See Also

• jmx4r website, http://code.google.com/p/jmx4r/
• Java Management Extensions by J. Steven Perry (O'Reilly)

3.12. Accessing Native Libraries with JRuby

3.12.1. Problem

You want to access native libraries such as Windows DLLs or Unix shared
objects (.so) from JRuby.

3.12.2. Solution

Use the Java Native Access (JNA) API to access the operating system's
libraries using only Java or any other JVM-based language like JRuby. JNA
uses a dynamic architecture that eliminates the chore of creating,
compiling, and distributing native interface files, which was required in
other Java frameworks like the Java Native Interface (JNI). Example 3-
18 shows how you can access the disk information from calls to the native
Windows libraries.

Example 3-18. JNA example showing Windows disk space
include Java

import com.sun.jna.ptr.LongByReference

Kernel32 = com.sun.jna.NativeLibrary.getInstance('kernel32')
GetDiskFreeSpace = Kernel32.getFunction('GetDiskFreeSpaceExA')
avail = LongByReference.new
total = LongByReference.new
total_free = LongByReference.new
num = GetDiskFreeSpace.invokeInt(["C:\\", avail, total,
total_free].to_java)
puts "available: #{avail.value}"
puts "total: #{total.value}"
puts "total_free #{total_free.value}"

3.12.3. Discussion

JNA is a great match with JRuby and makes it easier to create cross-
platform applications that run inside the Java Virtual Machine while still
accessing platform-specific APIs. The dynamic architecture is also

philosophically in tune with Ruby development because it uses designs
that eliminate extraneous code and facilitates rapid development.

3.12.4. See Also

• Java Native Access website, https://jna.dev.java.net

Chapter 4. Enterprise Java

Introduction

Creating a JNDI Context

Sending JMS Messages

Receiving JMS Messages

Implementing an Enterprise JavaBean with JRuby

Defining Spring Beans in JRuby

Creating Refreshable JRuby Spring Beans

Defining JRuby Spring Beans Inline

Applying Spring-Aware Interfaces to JRuby Objects

Creating Spring MVC Controllers with JRuby

Using Hibernate with JRuby

Using the Java Persistence API with JRuby

Making SOAP Calls

Simplifying LDAP Access

4.1. Introduction

As discussed in the introduction to Chapter 1, one of JRuby's great
strengths is its ability to seamlessly interact with the wide variety of
available Java libraries. One of the areas where this is most relevant is in
the so-called enterprise domain, where Java has become well entrenched.
Much of Java's success has come from the Java Enterprise Edition (Java
EE, formerly known as J2EE) platform standards. But platforms that are
not Java standards have been just as critical. Two will be covered in this
chapter: Spring Framework and Hibernate.[8] Regardless of whether a
particular technology is a standard or not, all enterprise Java platforms
are designed to enable developers to focus on developing business and
presentation logic rather than infrastructure and integration.

[8] For some time, the combination of Spring and Hibernate was being referred to as J3EE, but
this term seems to have disappeared in recent years.

This chapter starts with a recipe about using Java Naming and Directory
Interface (JNDI) objects from Ruby. As its name implies, JNDI is an API
for accessing directory services. JNDI presents application developers
with a unified interface that can span various services and service types.
Within a Java EE application server, JNDI is used by application code to
discover resources managed by the server. These could be data sources
(a subject discussed throughout Chapter 2), Enterprise JavaBeans (EJBs),
Java Messaging Service (JMS) objects, and a variety of other resources.
Your Java EE application server documentation should provide complete
details on what resources are available and how you can add additional
resources to the server. JNDI can also be used to access external
services. In the second and third recipes, we use JNDI to connect to a
remote JMS broker using the Apache ActiveMQ server so that we can send
and receive JMS messages. In a later recipe, we use JNDI to connect to a
Lightweight Directory Access Protocol (LDAP) server and use JRuby to
simplify the JNDI API.

Following JMS, we will look at implementing an Enterprise JavaBean
(EJB). Thanks to the support for annotation-based configuration that
arrived with EJB 3, EJB development has become much simpler, yet the
lack of annotation support in JRuby means that you still have to write a
small amount of bridge code to implement EJBs. Although JRuby and EJB
may seem like an odd match at first, the EJB model can provide some
significant benefits when being used with JRuby because of the instance
pooling provided by Java EE containers. These containers all perform
instance pooling for EJBs and only allow one consumer per EJB instance
at a time. This means that when writing an EJB, whether using Java or
Ruby, you do not need to worry about concurrency: the container does it
for you. Many Ruby libraries, most notably ActiveRecord and Rails, have
known concurrency problems; using EJBs eliminates the need to create
custom instance pools as described in Section 3.10 and in the discussion
of Rails in Chapter 2.

There are several recipes in this chapter that discuss JRuby integration
with the Spring Framework, sometimes referred to as just Spring. Spring
is, at the core, a platform for creating applications by defining application
components (in the form of Java classes) and the relationships between
them. This is known as Dependency Injection (DI) and/or Inversion of
Control (IoC).[9] Leveraging this core platform, Spring also provides
support for Aspect-Orientated Programming (AOP), transactions,
authentication and authorization, remoting, model-view-controller (MVC)
web development, and much more. Since version 2.0, Spring has
provided support for dynamic languages, including JRuby. This support,

the focus of several recipes, allows for objects defined in JRuby to be
transparently integrated with objects defined in Java (or other
dynamic languages).

[9] Strictly speaking, Dependency Injection is a particular application of the Inversion of
Control pattern, but in practice the terms are frequently used interchangeably.

This chapter also covers the Object-Relational Mapping (ORM) framework
Hibernate as well as the Java Persistence API (JPA).[10] Due to JRuby's
Java integration, using these frameworks from JRuby isn't terribly
complicated; mostly Hibernate and JPA just work. As a result, the recipes
are about using JRuby as a productivity booster for these APIs.

[10] Which is, in many ways, a standardized version of Hibernate.

4.2. Creating a JNDI Context

4.2.1. Problem

You need to create a JNDI Context object in order to connect to an LDAP
server or JMS broker.

4.2.2. Solution

Create a Ruby hash with the properties you want to use as the
environment and then pass this hash to the constructor
of javax.naming.InitialContext, wrapping it in
a java.util.Hashtableobject. For example, the code in Example 4-
1 creates a JNDI Context using the University of Michigan's public LDAP
server.

Example 4-1. Creating a custom JNDI Context
include Java

import java.util.Hashtable
import javax.naming.InitialContext
import javax.naming.Context

env = {Context::INITIAL_CONTEXT_FACTORY =>
"com.sun.jndi.ldap.LdapCtxFactory",
 Context::PROVIDER_URL => "ldap://ldap.itd.umich.edu:389" }

ctx = InitialContext.new(Hashtable.new(env))

4.2.3. Discussion

Although JRuby will coerce Ruby hashes into Java objects that implement
the java.util.Map interface, InitialContext objects are configured
using a Hashtable. As a result, the hash must be wrapped by
a Hashtable.

The properties used to instantiate the InitialContext object can also be
stored in a file called jndi.properties in the Java classpath. In the case
of Example 4-1, the following would be the contents of jndi.properties:

java.naming.factory.initial = com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url = ldap://ldap.itd.umich.edu:389

With this configuration in place, the InitialContext can be easily
created using the no-argument constructor:

ctx = InitialContext.new

Regardless of how it is configured, the value of
the java.naming.factory.initial property must be a class available on
the classpath. As discussed in Section 1.8, JRuby has the ability to add
JAR files to the classpath dynamically. However, that capability does not
apply to classes used in this type of factory class. This is because JAR files
added dynamically to the classpath by JRuby are only visible from Ruby
code. Throughout the next recipe, for example,
the java.naming.factory.initial property is set
to org.apache.activemq.jndi.ActiveMQInitialContextFactory. If you
tried to add this class (and its dependencies) to the classpath in JRuby,
a javax.naming.NoIni⁠tialCon⁠t⁠e⁠x⁠tException will be thrown:

$ jirb
irb(main):001:0> include Java
irb(main):002:0>
irb(main):003:0* require '/opt/java/libs/geronimo-j2ee-
management_1.0_spec-1.0.jar'
irb(main):004:0> require '/opt/java/libs/geronimo-jms_1.1_spec-
1.1.1.jar'
irb(main):005:0> require '/opt/java/libs/activemq-core-5.1.0.jar'
irb(main):006:0>
irb(main):007:0* import java.util.Hashtable
irb(main):008:0> import javax.naming.InitialContext
irb(main):009:0> import javax.naming.Context
irb(main):010:0>
irb(main):011:0* env = { Context::INITIAL_CONTEXT_FACTORY =>

irb(main):012:1*
"org.apache.activemq.jndi.ActiveMQInitialContextFactory",
irb(main):013:1* Context::PROVIDER_URL =>
irb(main):014:1* "tcp://localhost:61616" }
irb(main):015:0> ctx = InitialContext.new(Hashtable.new(env))
NativeException: javax.naming.NoInitialContextException: Cannot
instantiate class:\
 org.apache.activemq.jndi.ActiveMQInitialContextFactory

There is a solution to the problem—instantiate the class directly:

import org.apache.activemq.jndi.ActiveMQInitialContextFactory

env = { Context::PROVIDER_URL => "tcp://localhost:61616" }
ctx =
ActiveMQInitialContextFactory.new.get_initial_context(Hashtable.n
ew(env))

4.2.4. See Also

• The JNDI website, http://java.sun.com/products/jndi/

4.3. Sending JMS Messages

4.3.1. Problem

Your application needs to send messages to a Java Messaging Service
(JMS) message broker.

4.3.2. Solution

Add any necessary JAR files to the classpath. Create
a javax.naming.InitialContext object as described in Section 4.2. The
environment settings will be documented by the JMS broker vendor. For
example, to connect to an instance of Apache ActiveMQ, you would use
these properties:

env = { Context::INITIAL_CONTEXT_FACTORY =>
 "org.apache.activemq.jndi.ActiveMQInitialContextFactory",
 Context::PROVIDER_URL =>
 "tcp://localhost:61616" }

Once the InitialContext has been properly created, look up the
JMS ConnectionFac⁠t⁠o⁠r⁠y and Destination objects:

connection_factory = ctx.lookup("ConnectionFactory")
destination = ctx.lookup("dynamicQueues/output.queue")

The rest is simply JMS boilerplate, which we can encapsulate into a Ruby
class as seen in Example 4-2.

Example 4-2. Sending a JMS message from Ruby
include Java

import java.util.Hashtable
import javax.naming.InitialContext
import javax.naming.Context
import javax.jms.Session

class JmsSender

 def initialize(environment)
 @context = InitialContext.new(Hashtable.new(environment))
 @connection_factory = @context.lookup("ConnectionFactory")
 end

 def send_text_message(destination_name, message_text)
 destination = @context.lookup(destination_name)
 connection = @connection_factory.create_connection()
 session = connection.create_session(false,
Session::AUTO_ACKNOWLEDGE)
 producer = session.create_producer(destination)
 message = session.create_text_message
 message.text = message_text
 producer.send(message)
 session.close
 end
end

env = { Context::INITIAL_CONTEXT_FACTORY =>
 "org.apache.activemq.jndi.ActiveMQInitialContextFactory",
 Context::PROVIDER_URL =>
 "tcp://localhost:61616" }
sender = JmsSender.new(env)

sender.send_text_message("dynamicQueues/output.queue", "hello to
JMS from Ruby")

This message can then be seen in the ActiveMQ administrative web client,
as in Figure 4-1.

4.3.3. Discussion

As discussed in Section 4.2, to create
a javax.naming.InitialContext object
using org.apache.activemq.jndi.ActiveMQInitialContextFactory,
the ActiveMQ JAR files must be on the classpath when the application
starts—not added dynamically by JRuby.

Figure 4-1. JRuby message in the ActiveMQ web client

The JMS API defines five different types of messages:

Stream

Defined by the javax.jms.StreamMessage interface, messages of
this type contain one or more Java primitives or objects in
sequential order.

Map

Defined by the javax.jms.MapMessage interface, messages of this
type contain one or more name-value pairs. The names are
Java String objects and the values can be primitives or objects.

Text

Defined by the javax.jms.TextMessage interface, messages of this
type contain a single String object.

Object

Defined by the javax.jms.ObjectMessage interface, these messages
contain a Java object that implements the Serializable interface.

Bytes

Defined by the javax.jms.BytesMessage interface, this message
type is largely to support existing (i.e., non-JMS) messaging
systems.

All of these message types can be used from JRuby, but special care must
be taken when sending objects as JRuby objects are not correctly handled
using Java serialization. This is true even if the message receiver is a
JRuby application. For example, let's add a send_object_message method
to the class from Example 4-2:

def send_object_message(destination_name, message_object)
 destination = @context.lookup(destination_name)
 connection = @connection_factory.create_connection()
 session = connection.create_session(false,
Session::AUTO_ACKNOWLEDGE)
 producer = session.create_producer(destination)
 message = session.create_object_message message_object
 producer.send(message)
 session.close
end

If you were to call this message with a Ruby array:

arr = ["one", "two", "three"]
send_object_message("dynamicQueues/output.queue, arr)

An exception would be thrown when this message was received because
the array is serialized as an org.jruby.RubyArray object. Instead, you
should create a java.util.ArrayList object from this Ruby array:

arr = ["one", "two", "three"]
send_object_message("dynamicQueues/output.queue,
java.util.ArrayList.new(arr))

4.4. Receiving JMS Messages

4.4.1. Problem

Your application needs to receive messages from a JMS message broker.

4.4.2. Solution

The initial setup is similar to sending JMS messages: create a
JNDI InitialContext object and look up the ConnectionFactory and
destination from the JNDI context. Using theConnectionFactory, create
a Connection object and from the Connection, create a Session object.
The Session object can be used to create a MessageConsumer for
a destination. TheMessageConsumer object has two methods for receiving
messages, both named receive. If receive is called with no arguments,
then the method blocks until a message is available. If receive is called
with an argument (which must be numeric), the method blocks until a
message is available or the specific number of milliseconds passes.

Example 4-3 contains some basic code for receiving a message. Once the
message is received, it is inspected to see if it is a text message and, if
so, the text is output.

Example 4-3. Receiving a JMS message
include Java

import java.util.Hashtable
import javax.naming.InitialContext
import javax.naming.Context
import javax.jms.Session

env = { Context::INITIAL_CONTEXT_FACTORY =>
 "org.apache.activemq.jndi.ActiveMQInitialContextFactory",
 Context::PROVIDER_URL =>
 "tcp://localhost:61616" }

context = InitialContext.new(Hashtable.new(env))
connection_factory = context.lookup("ConnectionFactory")

destination = context.lookup("dynamicQueues/output.queue")
connection = connection_factory.create_connection()
session = connection.create_session(false,
Session::AUTO_ACKNOWLEDGE)
consumer = session.create_consumer(destination)

connection.start

message = consumer.receive
if (message.respond_to? 'text')
 p "message = #{message.text}"
else
 p "message isn't a text message"
end

connection.stop
session.close

4.4.3. Discussion

Note that in Example 4-3, we start the connection before receiving a
message. A running connection is required before receiving messages
whereas it is not for sending messages.

4.5. Implementing an Enterprise JavaBean
with JRuby

4.5.1. Problem

You want to encapsulate some Ruby code into an Enterprise JavaBean
(EJB) in order to easily integrate it with other EJBs and servlets as well as
take advantage of EJB container-provided services such as instance
pooling, security, and transactions.

4.5.2. Solution

Create an interface and implementation class for your EJB. A simple EJB
interface, annotated with @Local is in Example 4-4.

Example 4-4. EJB local interface
package org.jrubycookbook.j2ee.ejb;

import javax.ejb.Local;

@Local
public interface Reverser {
 public String reverse(String string);
}

In the implementation class, create an initialization method and use it to
create an instance of the JRuby runtime. This could be done with any of
the techniques discussed in Chapter 3. Annotate this initialization method
with the @PostConstruct annotation. Then in each business method (i.e.,
those defined by the EJB interface), wrap the method arguments in Ruby
objects, add them to the runtime, and finally execute the appropriate
block of Ruby code. Example 4-5 includes a JRuby-based EJB class. In
this example, the code is inline, but it could just as easily be in an
external file.

Example 4-5. JRuby EJB
package org.jrubycookbook.j2ee.ejb;

import javax.annotation.PostConstruct;
import javax.ejb.Stateless;

import org.jruby.Ruby;
import org.jruby.RubyString;
import org.jruby.javasupport.JavaEmbedUtils;

@Stateless
public class ReverserBean implements Reverser {

 private Ruby ruby;

 @PostConstruct
 public void init() {
 ruby = JavaEmbedUtils.initialize(Collections.EMPTY_LIST);
 }

 public String reverse(String string) {
 ruby.getGlobalVariables().set("$message",
ruby.newString(string));
 return
ruby.evalScriptlet("$message.reverse").asJavaString();
 }

}

This EJB can then be accessed by servlets and other EJBs in the same
container. Example 4-6 includes a servlet that uses this EJB.

Example 4-6. Servlet accessing the JRuby EJB
package org.jrubycookbook.j2ee.servlet;

import java.io.IOException;

import javax.ejb.EJB;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.jrubycookbook.j2ee.ejb.Reverser;

public class ReverseServlet extends HttpServlet {

 @EJB
 private Reverser reverser;

 protected void doGet(HttpServletRequest req,
HttpServletResponse resp)
 throws ServletException, IOException {
 String result =
reverser.reverse(req.getParameter("word"));
 resp.getWriter().println(result);
 }

}

A remote interface could also be defined and annotated with @Remote,
which would make this EJB accessible remotely using Remote Method
Invocation (RMI).

4.5.3. Discussion

As you can see, the class in Example 4-5 is just a bridge between the EJB
container and the JRuby runtime. In large part, this is necessary because
JRuby does not yet support Java annotations. If annotation support is
added to JRuby in the future, it may be possible to eliminate the class
(and perhaps the interface as well). It seems also likely that Java EE
container vendors will add direct support for JRuby-based EJBs if there is
demand for it.

The class in Example 4-5 is a stateless session bean (SLSB), but this
same technique would hold true for stateful session beans (SFSBs) and
message-driven beans (MDBs). You can also easily expose this EJB
through a web service interface by adding some additional annotations,
seen in Example 4-7.

Example 4-7. JRuby EJB with web service annotations
package org.jrubycookbook.j2ee.ejb;

import javax.jws.WebMethod;
import javax.jws.WebService;

// Other imports from Recipe 4-5

@WebService(targetNamespace = "http://jrubycookbook.org/ejb")
@Stateless
public class ReverserBean implements Reverser {

 private Ruby ruby;

// init() method from Example 4-5

 @WebMethod
 public String reverse(String string) {
 RubyString message = ruby.newString(string);
 ruby.getGlobalVariables().set("$message", message);
 return
ruby.evalScriptlet("$message.reverse").asJavaString();
 }

}

Figure 4-2 shows this web service being tested through the web service
testing interface included with the Sun Java System Application Server.

Figure 4-2. Testing the JRuby EJB web service

4.5.4. See Also

• Section 3.10"

4.6. Defining Spring Beans in JRuby

4.6.1. Problem

You use the Spring Framework as a Dependency Injection (DI) container
and wish to define some of your beans with JRuby.

4.6.2. Solution

Create a Java interface that defines the methods you will be implementing
in your Ruby class. Use jruby element within the lang namespace in the

Spring XML configuration to define a bean using both the interface and
the location of the Ruby script. JRuby beans can also be configured using
the lang:property element. A simple JRuby bean definition can be seen
in Example 4-8.

Example 4-8. Simple Spring JRuby bean definition
1 <?xml version="1.0" encoding="UTF-8"?>
2 <beans xmlns="http://www.springframework.org/schema/beans"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xmlns:lang="http://www.springframework.org/schema/lang"
5
xsi:schemaLocation="http://www.springframework.org/schema/beans
6 http://www.springframework.org/schema/beans/spring-
beans.xsd
7 http://www.springframework.org/schema/lang
8 http://www.springframework.org/schema/lang/spring-
lang.xsd">
9
10 <lang:jruby id="rubyListener"
11 script-interfaces="org.jrubycookbook.ch04.Listener"
12 script-
source="classpath:org/jrubycookbook/ch04/ruby_listener.rb">
13 <lang:property name="prefix" value="(from Ruby) " />
14 </lang:jruby>
15
16 </beans>

In this example, lines 2 through 8 are the boilerplate Spring configuration
needed to set up both the default and lang namespaces. Lines 10
through 14 contain the actual bean definition including the setting of a
property named prefix. The interface is defined in Example 4-9 and the
Ruby implementation is in Example 4-10.

Example 4-9. Simple interface for Spring bean
package org.jrubycookbook.ch04;

public interface Listener {
 public void receiveMessage(String message);
}

Example 4-10. Ruby script referenced from Spring
configuration
class RubyListener
 # setter for prefix property
 def setPrefix(p)
 @prefix = p
 end

 # implementation of Listener interface
 def receiveMessage(s)
 puts "#{@prefix}Got Message: #{s}"
 end
end

RubyListener.new

Note that for Spring to set the prefix property, a setPrefix() method
must be defined. If we were writing traditional Ruby code, this method
would likely be called prefix= and you would have generated the method
with attr_accessor or attr_writer. But because Spring is based on the
JavaBean standard, it expects a method named setPrefix().

To use JRuby with Spring, your classpath must include the following JAR
files, all of which are included in the Spring distribution:[11]

[11] This is for Spring 2.5.1. Check the documentation for other versions.

• spring.jar
• asm-2.2.3.jar
• backport-util-concurrent.jar
• cglib-nodep-2.1_3.jar
• commons-logging.jar
• jruby.jar

At the time of writing, Spring's support for JRuby was
not compatible with the 1.1; only JRuby 1.0 is
supported.

4.6.3. Discussion

Spring's dynamic language support, which currently also includes support
for Groovy and BeanShell in addition to JRuby, works by creating a

dynamic proxy object that implements the interfaces listed in the script-
interfaces attribute. This proxy receives the actual method calls and
delegates to the object created by the script file referenced in
the script-source attribute. The syntax of the script-source attribute is
the standard Spring syntax for accessing resources. In Example 4-8, we
are referencing a Ruby source file in the classpath, but this could just
have easily used a filesystem resource, a URL resource, or, if appropriate,
a servlet context resource.

Spring beans written in a dynamic language require some features from
the ApplicationContext interface, so a
plain BeanFactory implementation such as that used in Example 4-
11 won't work.

Example 4-11. Using JRuby within a BeanFactory won't work
package org.jrubycookbook.ch04;

import org.springframework.beans.factory.xml.XmlBeanFactory;
import org.springframework.core.io.ClassPathResource;

public class ListenerBootstrap {
 public static void main(String[] args) {
 ClassPathResource config =
 new
ClassPathResource("org/jrubycookbook/ch04/listener_beans.xml");
 XmlBeanFactory ctx = new XmlBeanFactory(config);

 Listener listener = (Listener)
ctx.getBean("rubyListener");
 listener.receiveMessage("Hello");
 }
}

Instead, we have to use an ApplicationContext implementation, such
as the ClassPathXmlApplicationContext class used in Example 4-12.

Example 4-12. Using JRuby within an ApplicationContext
package org.jrubycookbook.ch04;

import
org.springframework.context.support.ClassPathXmlApplicationContex
t;

public class ListenerBootstrap {
 public static void main(String[] args) {
 String config =
"org/jrubycookbook/ch04/listener_beans.xml";
 ClassPathXmlApplicationContext ctx =
 new ClassPathXmlApplicationContext(config);

 Listener listener = (Listener)
ctx.getBean("rubyListener");
 listener.receiveMessage("Hello");
 }
}

Looking back at Example 4-10, you can see that this script both defines a
Ruby class named RubyListener and returns a new instance of that
class. This wasn't actually necessary in this case; Spring would be capable
of recognizing that the script had created a class and would generate a
new instance of that class if one had not been provided. However, it is
good practice to include this command because Spring may not always
create a new instance of the correct class. The best example of this is
when the reference Ruby file contains multiple class definitions, as
in Example 4-13.

Example 4-13. Ruby script that will confuse Spring
class RubyListener
 def setPrefix(p)
 @prefix = p
 end

 # implementation of Listener interface
 def receiveMessage(s)
 puts "#{@prefix}Got Message: #{s}"
 end
end

class OtherRubyListener < RubyListener
 # implementation of Listener interface
 def receiveMessage(s)
 puts "#{@prefix}Got A Message: #{s}"
 end
end

As a result, it's simpler to always use the new command on the last line of
your Ruby script to ensure that Spring has access to the correct object.

4.6.4. See Also

• The Spring Framework website, http://www.springframework.org/

4.7. Creating Refreshable JRuby Spring
Beans

4.7.1. Problem

Your Spring container includes beans that you want to reload when their
underlying definitions change.

4.7.2. Solution

Add a refresh-check-delay attribute to the lang:jruby element in your
Spring XML configuration file. The use of this attribute tells Spring to
watch the resource referenced in the script-source attribute. The value
indicates how many milliseconds will pass between scans of the resource
for changes.

Alternatively, you can apply a default value for the refresh-check-delay
attribute by using the defaults element in the lang namespace. For

example, to apply a one second delay to all dynamic-language beans in
the ApplicationContext, include this element in your XML configuration
file:

<lang:defaults refresh-check-delay="1000"/>

4.7.3. Discussion

One simple way to demonstrate this refreshable bean functionality is to
use Spring's support for Java Timer objects. The Spring configuration XML
in Example 4-14 includes the samerubyListener bean defined
in Example 4-10 and adds an implementation of java.util.TimerTask to
output the current time. It also includes the Spring plumbing necessary to
invoke this task every five seconds.

Example 4-14. Refreshable JRuby Spring bean called by a
TimerTask
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:lang="http://www.springframework.org/schema/lang"

xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-
lang.xsd">

 <lang:defaults refresh-check-delay="1000" />

 <lang:jruby id="rubyListener"
 script-interfaces="org.jrubycookbook.ch04.Listener "
 script-
source="classpath:org/jrubycookbook/ch04/ruby_listener.rb">
 <lang:property name="prefix" value="(from Timer) " />
 </lang:jruby>

 <bean id="sendDateTask"
class="org.jrubycookbook.ch04.SendDateTask">
 <property name="listener" ref="rubyListener"/>
 </bean>

 <bean id="scheduledTask"

class="org.springframework.scheduling.timer.ScheduledTimerTask">
 <property name="period" value="5000" />
 <property name="timerTask" ref="sendDateTask" />
 </bean>

 <bean id="timerFactory"

class="org.springframework.scheduling.timer.TimerFactoryBean">
 <property name="scheduledTimerTasks">
 <list>
 <ref bean="scheduledTask" />
 </list>
 </property>
 </bean>
</beans>

The SendDateTask class, seen in Example 4-15, simply formats the
current date and passes it to the injected implementation of
the Listener interface.

Example 4-15. The SendDateTask class
package org.jrubycookbook.ch04;

import java.util.Date;
import java.util.TimerTask;

public class SendDateTask extends TimerTask {

 private Listener listener;

 public void setListener(Listener listener) {
 this.listener = listener;
 }

 public void run() {
 listener.receiveMessage(String.format("%tT", new
Date()));
 }
}

With these classes in place, we can start up
the ApplicationContext with the code in Example 4-16. Once it is
running, changes to the ruby_listener.rb file can be seen with each
execution ofSendDateTask.

Example 4-16. Starting an ApplicationContext with Timer
support
package org.jrubycookbook.ch04;

import
org.springframework.context.support.ClassPathXmlApplicationContex
t;

public class TimedBootstrap {
 public static void main(String[] args) {
 String config = "org/jrubycookbook/ch04/timer_beans.xml";
 ClassPathXmlApplicationContext ctx =
 new ClassPathXmlApplicationContext(config);
 }
}

For example, we could change the RubyListener class to reverse the
messages:

class RubyListener
 def setPrefix(p)
 @prefix = p
 end

 # implementation of Listener interface
 def receiveMessage(s)
 puts "#{@prefix}Got Message: #{s}".reverse
 end
end

RubyListener.new

Making this change while the ApplicationContext is running can
produce output like this:

(from Timer) Got Message: 21:21:48
(from Timer) Got Message: 21:21:53
85:12:12 :egasseM toG)remiT morf(

4.8. Defining JRuby Spring Beans Inline

4.8.1. Problem

You're using Spring and want to define beans in JRuby directly inside your
Spring XML configuration file instead of in an external file.

4.8.2. Solution

Instead of providing a resource location with a script-source attribute,
you can include JRuby script inside an inline-script element in
the lang namespace as seen in Example 4-17.

Example 4-17. JRuby script inside an inline-script element
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:lang="http://www.springframework.org/schema/lang"

xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-
lang.xsd">

 <lang:jruby id="rubyListener"
 script-interfaces="org.jrubycookbook.ch04.Listener">
 <lang:inline-script><![CDATA[
class RubyListener
 def setPrefix(p)
 @prefix = p
 end

 # implementation of Listener interface
 def receiveMessage(s)
 puts "#{@prefix}Got Message: #{s}"
 end
end

RubyListener.new
]]></lang:inline-script>
 <lang:property name="prefix" value="(from Ruby) " />
 </lang:jruby>

</beans>

4.9. Applying Spring-Aware Interfaces to
JRuby Objects

4.9.1. Problem

Your Spring ApplicationContext contains JRuby-based beans that need
to implement one of the Aware interfaces, such
as org.springframework.context.ApplicationCon⁠tex⁠tAware.

4.9.2. Solution

Include implementations of the methods defined in the interface in your
JRuby class and add the appropriate interface name to the script-
interfaces attribute.

4.9.3. Discussion

The Spring Framework includes a number of interfaces that can be used
to make a bean aware of its surroundings. Generally, these interfaces
define a single method that is called by the container during initialization.
Here is a sampling of these interfaces:

org.springframework.context.ApplicationContextAware

The ApplicationContext instance that contains this bean is passed
to the s⁠e⁠tA⁠p⁠p⁠l⁠i⁠cationContext() method.

org.springframework.beans.factory.BeanFactoryAware

The BeanFactory instance that contains this bean is passed to
the setBeanF⁠a⁠c⁠t⁠o⁠r⁠y() method.

org.springframework.beans.factory.BeanNameAware

The name of this bean in the containing BeanFactory is passed to
the setBeanName() method.

org.springframework.context.ResourceLoaderAware

A ResourceLoader, which can resolve a String identifier to
a Resource object, is passed to the setResourceLoader() method.

org.springframework.context.MessageSourceAware

A MessageSource, which can resolve a message code and
parameters to an appropriately internationalized message, is
passed to the setMessageSource() method.

org.springframework.web.context.ServletContextAware

A javax.servlet.ServletContext object is passed to
the setServletContext() method.

Example 4-18 shows an inline implementation of
the BeanNameAware interface.

Example 4-18. Inline JRuby Spring bean that implements the
BeanNameAware interface
<lang:jruby id="rubyListener"
 script-interfaces="org.jrubycookbook.ch04.Listener,
 org.springframework.beans.factory.BeanNameAware">
 <lang:inline-script><![CDATA[
class RubyListener
 # implementation of BeanNameAware interface
 def setBeanName(beanName)
 @beanName = beanName
 end

 # implementation of Listener interface
 def receiveMessage(s)
 puts "Hello, I'm named #{@beanName}"
 puts "#{@prefix}Got Message: #{s}"
 end
end

RubyListener.new
]]></lang:inline-script>
</lang:jruby>

As implementations of these interfaces are generally the same—just save
the injected object into an instance variable—they are a good case for
using Ruby modules. Example 4-19 contains a Ruby module
named Spring that includes boilerplate implementations of the interfaces
listed earlier in this recipe.

Example 4-19. Ruby module implementing Spring aware
interfaces
module Spring
 # implementation of ApplicationContextAware interface
 module ApplicationContextAware
 def setApplicationContext(ctx)
 @applicationContext = ctx
 end
 end

 # implementation of BeanFactoryAware interface
 module BeanFactoryAware
 def setBeanFactory(bf)
 @beanFactory = bf
 end
 end

 # implementation of BeanNameAware interface
 module BeanNameAware
 def setBeanName(beanName)
 @beanName = beanName
 end
 end

 # implementation of ResourceLoaderAware interface
 module ResourceLoaderAware
 def setResourceLoader(loader)
 @resourceLoader = loader
 end
 end

 # implementation of MessageSourceAware interface
 module MessageSourceAware
 def setMessageSource(source)
 @messageSource = source
 end
 end

 # implementation of ServletContextAware interface
 module ServletContextAware
 def setServletContext(ctx)
 @servletContext = ctx
 end
 end
end

Using this module in a Ruby class is simply a matter of including the
appropriate module, as in Example 4-20.

Example 4-20. Using a Spring module
require "spring.rb"

class RubyListener
 include Spring::BeanNameAware

 # implementation of Listener interface
 def receiveMessage(s)
 puts "Hello, I'm named #{@beanName}"
 puts "#{@prefix}Got Message: #{s}"
 end
end

Determining JRuby's Load Path

Once you start including external files in your JRuby scripts, as
in Example 4-20, it becomes critical to have a handle on your load
path. Depending on how you invoke JRuby, the load path may be
different when JRuby is used inside the Spring container than
when JRuby is run from the command line. Here is a simple JRuby
Spring bean that will output the load path when the container
loads:

<lang:jruby id="loadPathOutputter" script-interfaces=\
"org.springframework.beans.factory.InitializingBean">
 <lang:inline-script><![CDATA[
class LoadPathOutputter
 def afterPropertiesSet()
 puts "Ruby Path is #{$:.join(';')}"
 end
end

LibOutputter.new
]]></lang:inline-script>
</lang:jruby>

You can use the java.home system property to change JRuby's
load path. See Section 3.2 for details.

4.9.4. See Also

• Section 3.2"

4.10. Creating Spring MVC Controllers with
JRuby

4.10.1. Problem

Redeploying a Java controller in Spring MVC can be time-consuming and
disruptive to development. This is especially the case for web applications
with many modules and/or large amounts of data loaded on startup. You
would like to modify your controller code without reloading the running
web application.

4.10.2. Solution

Spring's dynamic language support can speed up the development of
Spring MVC applications by allowing you to define the controllers as JRuby
objects. Not only can you eliminate the compilation step needed for Java
development, but with Spring's refreshable bean feature (see Section
4.6), controller classes can be updated and redefined at runtime without a
redeployment of the full web application. Open the Spring configuration
file and create a JRuby controller by defining a Spring bean using the
dynamic language elements as described in Section 4.5 and Section 4.6.
Set the value of script-
interfaces to org.springframework.web.servlet.mvc.Controller and
 script-source to the location of a Ruby file that will define and
instantiate the controller class. Note that the scripts-source value is
relative to the web application folder. Example 4-21 shows a Spring
configuration file with a JRuby controller named hellocontroller that
renders a JSP page.

Example 4-21. Spring configuration file with simple JRuby
controller
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/lang
http://www.springframework.org/schema/lang/spring-lang-2.5.xsd">

 <lang:jruby id="hellocontroller" refresh-check-delay="3000"
 script-source="/WEB-INF/ruby/hello.rb"
 script-
interfaces="org.springframework.web.servlet.mvc.Controller">
 </lang:jruby>

 <bean id="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewR
esolver">
 <property name="viewClass"
 value="org.springframework.web.servlet.view.JstlView"/>
 <property name="prefix" value="/WEB-INF/jsp/"/>
 <property name="suffix" value=".jsp"/>
 </bean>

 <bean id="urlMapping"

class="org.springframework.web.servlet.handler.SimpleUrlHandlerMa
pping">
 <property name="mappings">
 <props>
 <prop key="/hello.htm">hellocontroller</prop>
 </props>
 </property>
 </bean>
</beans>

Open the Ruby file specified by the script-source value and create a
JRuby class with a handleRequest method that takes two arguments,
the HttpServletRequest and HttpServletResponseobjects.
The handleRequest method is called on each web request and returns a
Java ModelAndView object that contains the view name and model map.
The last statement in your Ruby file must instantiate the new controller
class. Example 4-22 shows a JRuby controller that adds a few values to
the model and renders the hello.jsp template.

Example 4-22. JRuby class as a Spring MVC controller
include Java

import org.springframework.web.servlet.ModelAndView

class HelloController
 def handleRequest(request, response)
 mav = ModelAndView.new "hello"
 mav.add_object("example","hello!")

mav.add_object("example_hash",{"foo"=>"bar","alpha"=>"beta"})
 return mav
 end
end

HelloController.new

The JSP page in Example 4-23 uses the standard syntax to access the
model data and works independently from the controller's choice of
implementation language. The Ruby hash that was added to the
model, example_hash, is conveniently converted into a Java map and
accessed using the JSP shorthand for outputting maps.

Example 4-23. Simple JSP template
<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
 <title>My Sample JSP</title>
 </head>
 <body>
 String val: ${example}

 Hash val foo: ${example_hash.foo}

 Hash val moo: ${example_hash.alpha}

 </body>
</html>

Redeploy your controller by overwriting the existing Ruby file in your web
application. Update the file in the web application folder if you are
deploying an expanded WAR. Otherwise, locate the temporary folder
where the container has exploded your WAR or EAR file and update the
controller. Consult the documentation of your application server because

this location differs for each server and platform; it is usually found in a
temporary file area or in the same folder as the WAR. The location of the
expanded WAR is often written to the console on startup and can be
found in the application server's logs.

4.10.3. Discussion

JRuby controllers can also be defined in your Spring configuration file
using the inline bean support (see Section 4.6).
The inlinecontroller bean in Example 4-24 contains the same code
that would normally be in the Ruby file specified by the script-
source value. It's not advised to build your entire web application using
this technique for code management reasons and the loss of the
redeployment feature, but this feature may be useful for the quick
prototyping of controllers or adding some simple redirection logic, which
is demonstrated in Example 4-24.

Example 4-24. Inline JRuby controller definition
<lang:jruby id="inlinecontroller"
 script-
interfaces="org.springframework.web.servlet.mvc.Controller">
 <lang:inline-script>
include Java
import org.springframework.web.servlet.ModelAndView
class MySecController
 def handleRequest(request, response)
 ModelAndView.new "redirect:/hello.htm"
 end
end
MySecController.new
 </lang:inline-script>
</lang:jruby>

4.10.4. See Also

• Section 4.6"
• Section 4.7"
• Section 4.8"

4.11. Using Hibernate with JRuby

4.11.1. Problem

You would like to use Hibernate in your JRuby application.

4.11.2. Solution

Ideally, working with a Hibernate Data Access Object (DAO) should be no
different from any other Java class. The main concern for JRuby
developers is the use of Java Generics and JRuby's inability to create
classes or call methods with input arguments that use the Generics
feature. Hibernate gives Java developers a lot of flexibility in the
implementation of the DAO and many leverage Java Generics to reduce
the size of classes and method counts. However, the typical pattern for
creating DAOs in the most popular online tutorials do not expose the
Generics as part of the DAOs' public API, even though they are used
internally. They are commonly created through a factory interface or by
instantiating wrapper DAOs for classes. The JRuby program in Example 4-
25 accesses the PersonDao through a factory while the EventDao is
directly instantiated.

Example 4-25. Accessing Hibernate Data Access Objects
include Java

import example.dao.PersonDao
import example.dao.DaoFactory
import example.dao.EventDao
import example.model.Person
import example.model.Event
import util.HibernateUtil

event_dao = EventDao.new
event_dao.set_session
HibernateUtil::get_session_factory.get_current_session
dao.create(Event.new("JRuby Meeting",java.util.Date.new))
dao.find_all.each do |e| puts "#{e.get_title } #{e.get_date}";
end

person_dao = DaoFactory.instantiate(PersonDao.class)
dao.create(Person.new("Justin","Wood"))
dao.create(Person.new("Brian","Henry"))
dao.find_all.each do |p| puts "#{p.get_firstname}
#{p.get_lastname}"; end

4.11.3. Discussion

The Hibernate session is obtained through a static method in
the HibernateUtil class and manually injected into the EventDao class.
It's a common Hibernate design pattern to provide access to the
Hibernate session factory through a static method in a global utility class.
The HibernateUtil class becomes the common point of configuration and
management and can hide many of the mapping details from your DAOs.

Database transactions can be nicely expressed using a Ruby function that
yields to an inputted block. The block contains the database interaction
code and is evaluated between the enclosing parent function's call to
initialize and end the transaction. Errors can be detected and handled in
the transaction function and kept out of the business code. The result is
clean API that eliminates the verbose and repetitive transaction calls and
an enhanced clarity of the transactional code, which is now identified
through a function metaphor rather than explicit API calls to begin and
end the transaction. Example 4-26 defines a TransactionHelper module
that contains functions to initiate a standard JDBC transaction and the
more universal Java Transaction API (JTA) transaction. The example also
includes a controller that demonstrates the use of the module and how to
easily add either transaction mechanism to your database access code.

Example 4-26. Using blocks to define transactions
include Java

import util.HibernateUtil
import javax.naming.InitialContext

module TransactionHelper

 def with_transaction
 begin
 tx =
HibernateUtil.session_factory.current_session.beginTransaction
 yield
 tx.commit
 HibernateUtil.session_factory.current_session.close
 rescue
 tx.rollback
 end
 end

 def with_jta_transaction
 begin
 ctx = InitialContext.new
 utx = ctx.lookup("java:comp/UserTransaction");
 utx.begin();
 yield
 utx.commit
 rescue
 utx.rollback
 end
 end
end

class UserController
 extend TransactionHelper
 def create
 with_transaction do
 @id = User.create("Tom")
 end

 with_jta_transaction do
 tom = User.find_by_id(@id)
 end
 end
end

4.12. Using the Java Persistence API with
JRuby

4.12.1. Problem

You want to use the Java Persistence API (JPA) in your JRuby application.

4.12.2. Solution

Use the static JPA
method Persistence.createEntityManagerFactory() to generate a
factory for your persistence unit. A call to the
factory's createEntityManager() method generates a
newEntityManager class, which is your primary tool for accessing the
Persistence API. The EntityManager is analogous to
Hibernate's Session or Toplink's ClientSession object and contains the
methods to interact with the database and your model objects.
The EntityManager object is not threadsafe and shouldn't be used with
multiple concurrent requests. It is designed to be used and discarded in a
relatively short amount of time and not as a long-running software
component. Example 4-27 shows a JRuby application that creates a
few User objects and then queries the database to confirm that they were
successfully added.

Example 4-27. Example JPA access from JRuby
include Java

import javax.persistence.Persistence
import cookbook.User

def with_trans(em)
 t = em.getTransaction();
 begin
 t.begin()
 yield
 t.commit
 ensure
 t.rollback if t.isActive
 end
end

emf = Persistence.createEntityManagerFactory("hello-world")
em = emf.createEntityManager

with_trans(em) do
 u =
User.new("stephen","lee","slee","password","stephen@ora.com")
 u2 =
User.new("stephen","smith","ssmith","password","ssmith@ora.com")
 em.persist(u)
 em.persist(u2)
end
query = em.createQuery("select u from User u where u.firstname =
:firstname").
query.set_parameter("firstname", "stephen").
hu = query.get_result_list

hu.each do |u|
 puts "found #{u.firstname} #{u.lastname}"
end

em.close
emf.close

4.12.3. Discussion

The example demonstrates the use of a block once again (see Section
4.10) to express a JPA transaction. This helper method also automatically
rolls back the transaction if the commit should fail.

4.12.4. See Also

• Section 4.11"

4.13. Making SOAP Calls

Credit: Steven Shingler

4.13.1. Problem

You need to invoke a remote method through a SOAP-based web service.

4.13.2. Solution

Use the Mule client module, available from http://mule.mulesource.org,
and a Ruby XML parsing library such as REXML or Hpricot. Example 4-
28 uses Mule to make a request to one of the web services provided by
the National Oceanic and Atmospheric Administration (NOAA).

Example 4-28. Making a SOAP request with the Mule client
module
include Java

require "rexml/document"
import org.mule.module.client.MuleClient

url =
"axis:http://www.weather.gov/forecasts/xml/SOAP_server/ndfdXMLser
ver.php"
method = "method=LatLonListZipCode"
client = MuleClient.new
message = client.send("#{url}?#{method}", "10036", nil)
doc = REXML::Document.new message.payload
puts doc.root.elements[1].text
exit

To run this script, Mule and several dependencies need to be added to the
classpath. Because of classloader requirements, these dependencies must
be on the system classpath (e.g., through the use of
the CLASSPATH environment variable); they cannot be added to the
classpath by using JRuby's extension of the require method as described
in Section 1.8. For this particular script, the dependencies can be added
to the classpath using these commands:

export MULE_LIB=/opt/mule/lib
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/activation-1.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/axis-1.4.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/axis-jaxrpc-1.4.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/backport-util-
concurrent-3.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/commons-beanutils-
1.7.0.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/commons-codec-1.3.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/commons-collections-
3.2.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/commons-discovery-
0.2.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/commons-httpclient-
3.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/commons-io-1.3.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/commons-lang-2.3.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/commons-logging-
1.1.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/commons-pool-1.4.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/dom4j-1.6.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/geronimo-j2ee-
connector_1.5_spec-1.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/geronimo-
servlet_2.5_spec-1.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/jaxen-1.1.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/jug-2.0.0-asl.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/mule/mule-core-2.0.2.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/mule/mule-module-client-
2.0.2.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/mule/mule-transport-axis-
2.0.2.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/saaj-api-1.3.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/stax-api-1.0.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/wsdl4j-1.6.1.jar
export CLASSPATH=$CLASSPATH:$MULE_LIB/opt/wstx-asl-3.2.6.jar

NOTE

The "Full Distribution" Mule download includes all third-party
dependencies except for Jakarta Commons Logging, which can be
downloaded from http://commons.apache.org/logging/.

4.13.3. Discussion

The send method of the MuleClient class will accept any object as the
message payload. However, care must be taken when passing objects
other than Java primitives or their Ruby equivalents. For these other
types, use the Axis WSDL2Java tool to generate Java classes from the
web service's descriptor:

$ java org.apache.axis.wsdl.WSDL2Java\
http://www.weather.gov/forecasts/xml/SOAP_server/ndfdXMLserver.ph
p?wsdl

In Example 4-28, the URL for the NOAA web service endpoint is prefixed
with axis, indicating to the Mule engine that we wish to use the Axis
library to invoke the web service. By including different and/or additional
dependencies on the classpath, different libraries and different transport
mechanisms can be used.

4.13.4. See Also

• Mule website, http://mule.mulesource.org/
• Apache Axis website, http://ws.apache.org/axis/
• REXML website, http://www.germane-

software.com/software/rexml/
• Hpricot website, http://code.whytheluckystiff.net/hpricot/

4.14. Simplifying LDAP Access

4.14.1. Problem

You are looking up entries and attributes in an LDAP directory through
JNDI and are looking to simplify the API.

4.14.2. Solution

Use JRuby's open class feature (described in Section 1.10) to add helper
methods to the com.sun.jndi.ldap.LdapCtx class.

4.14.3. Discussion

Although powerful, the JNDI API can frequently feel unnecessarily
verbose. For example, the Java code required to access a single attribute
value is awkward:

// Lookup the entry
LdapContext entry =
ctx.lookup("uid=mts,ou=People,dc=umich,dc=edu");
// First, get all of the Attributes associated with this entry.
Attributes attributes = entry.getAttributes("");
// Then get a single named Attribute.
Attribute attribute = attributes.get("mail");
// Then actually get the value.
String value = (String) attribute.get();

For an attribute with multiple values, it's even worse:

// Lookup the entry
LdapContext entry =
ctx.lookup("uid=mts,ou=People,dc=umich,dc=edu");
// First, get all of the Attributes associated with this entry.
Attributes attributes = entry.getAttributes("");
// Then get a single named Attribute.
Attribute attribute = attributes.get("mail");
// Then get a NamingEnumeration of the attribute values.
NamingEnumeration ne = attribute.getAll();
// Create a list, loop through the NamingEnumeration,
// and add each value to the list
List<String> values = new ArrayList<String>();
while (ne.hasMore()) {
 values.add(ne.next());
}

Example 4-29 shows two methods being added to the LdapCtx class,
which simplify this API significantly.

Example 4-29. Adding methods to the LdapCtx class
include Java

import com.sun.jndi.ldap.LdapCtx

class LdapCtx
 def get_attribute_value(key)
 get_attributes("", [key].to_java(:string)).get(key).get
 end
 def get_attribute_values(key)
 values = []
 enum = get_attributes("",
[key].to_java(:string)).get(key).get_all
 while enum.has_more
 values << enum.next
 end
 return values
 end
end

Adding these methods makes the following code to access the LDAP
attributes:

entry = ctx.lookup("uid=mts,ou=People,dc=umich,dc=edu")

p "Email = #{entry.get_attribute_value("mail")}"
entry.get_attribute_values("cn").each do |name|
 p "Name = #{name}"
end

For Example 4-29 to work, you must use Sun's LDAP JNDI support from
the package com.sun.ldap.jndi. Typically, this is done by creating a
JNDI Context, as shown in Section 4.2. If you are using a different LDAP
library, you can easily adapt the listing in Example 4-29 to the library. All
you need to do is discover the name of the class that
implementsjavax.naming.directory.DirContext. You can easily
use jirb for this:

$ jirb
irb(main):001:0> include Java
irb(main):002:0> import java.util.Hashtable
irb(main):003:0> import javax.naming.InitialContext
irb(main):004:0> import javax.naming.Context
irb(main):005:0> env = {
irb(main):006:1* Context::INITIAL_CONTEXT_FACTORY,
irb(main):007:1* "com.sun.jndi.ldap.LdapCtxFactory",
irb(main):008:1* Context::PROVIDER_URL,
irb(main):009:1* "ldap://ldap.itd.umich.edu:389"
irb(main):010:1> }
irb(main):011:0> ctx = InitialContext.new(Hashtable.new(env))
irb(main):012:0>
ctx.lookup("uid=mts,ou=People,dc=umich,dc=edu").java_class
=> com.sun.jndi.ldap.LdapCtx

Chapter 5. User Interface and Graphics

Introduction

Creating Swing Applications

Swing Event Handling

Long-Running Tasks in Swing Applications

Packaging Standalone Applications

Packaging JRuby Web Start Applications

Creating JRuby Applets

Manipulating Images

Creating SWT Applications

Accessing the Native Desktop

Accessing the System Tray

Swing Development with JRuby Domain-Specific Languages

Using the Monkeybars Framework for Swing Development

Creating Qt Applications with JRuby

5.1. Introduction

The JRuby community has paid a lot of attention to web development, but
JRuby is also a powerful tool for client application development. By
allowing the runtime to access the graphics subsystem, JRuby can be
used to create GUI applications with the Abstract Windowing Toolkit
(AWT), Swing and the Simple Widget Toolkit (SWT), as well as newer
projects like Qt Jambi. These toolkits have a rich set of UI widgets but
they also permit tight integration with the native operating system. A few
recipes in this chapter explain how to use JRuby to create system tray
and desktop components and access native GUI libraries.

Given the popularity of declarative programming and Ruby's
powerful Domain-Specific Language (DSL) building capabilities, it is to be

expected that JRuby developers would explore ways to improve
traditional Java UI programming. There are several options to facilitate
Swing development: Swigby, Cheri::Swing, Monkeybars, and Profligacy.
Similarly, the Glimmer Eclipse project was created for SWT and
QT::JRuby has built-in DSL support.

The Rawr gem is a useful tool for packaging your JRuby applications
desktop as well as the Web. This gem provides a set of Rake tasks that
can be configured to package your JRuby programs as executable JAR
files, Windows executables, Mac OS X applications, and Web Start
applications. A recipe also describes techniques for using JRuby to build
Java applets.

Image processing is one of the few areas where Ruby runtimes still
depend on native or C code. Use RMagic4J and ImageVoodoo as
alternatives to the popular RMagic and ImageScience gems. You can also
access the Java 2D API for advanced processing needs.

5.2. Creating Swing Applications

5.2.1. Problem

You want to build your Java Swing user interface with JRuby.

5.2.2. Solution

JRuby's runtime support extends to the graphics libraries and Swing
components. Example 5-1 shows a simple Swing application that displays
a message in a window.

Example 5-1. Simple Swing UI
include Java
import javax.swing.JFrame

frame = JFrame.new "JRuby Message"
frame.default_close_operation = JFrame::EXIT_ON_CLOSE
msg = javax.swing.JLabel.new "JRuby Rocks"
frame.content_pane.add msg
frame.pack
frame.visible = true

5.2.3. Discussion

JRuby can access the entire Swing API, including advanced features like
the Look and Feel libraries. Example 5-2 shows how to toggle between
Swing's default Metal theme and the native platform's Look and Feel.

Example 5-2. Changing the application's look and feel
include Java

import javax.swing.JFrame
import javax.swing.UIManager

frame = JFrame.new "JRuby Look And Feel"
frame.default_close_operation = JFrame::EXIT_ON_CLOSE
frame.content_pane.layout = java.awt.GridLayout.new(1, 2)

{:metal => "javax.swing.plaf.metal.MetalLookAndFeel",
 :system => UIManager::getSystemLookAndFeelClassName}.each do
|l,c|
 but = javax.swing.JButton.new l.to_s
 but.add_action_listener do |evt|
 UIManager::look_and_feel = c
 javax.swing.SwingUtilities::updateComponentTreeUI frame
 frame.pack
 end
 frame.add(but)
end

frame.pack
frame.visible = true

You can access third-party Look and Feel libraries such as Substance or
Napkin by including their JAR files in the Java classpath and referencing
the name of the Look and Feel class.

5.2.4. See Also

• Section 5.3"
• Section 5.4"

5.3. Swing Event Handling

5.3.1. Problem

You want to handle events that are generated by Swing components.

5.3.2. Solution

You generally want to use the block coercion feature in JRuby for most
GUI event processing. Event listeners that define only a single method
such as javax.awt.event.ActionListener can make use of this feature
and allow for very concise event-handling code. The application
in Example 5-3 uses blocks to capture the button click event and changes
to the text field.

Example 5-3. Events handled through block coercion
include Java
import javax.swing.JFrame

frame = JFrame.new "Event Handler - Coerced"
frame.default_close_operation = JFrame::EXIT_ON_CLOSE

t = javax.swing.JTextField.new(10)
b = javax.swing.JButton.new("search")
b.add_action_listener { |evt| puts "searching" };
t.document.add_document_listener { |evt| puts "checking
#{t.text}" };

frame.layout = java.awt.GridLayout.new(1, 2)
frame.add t
frame.add b
frame.pack
frame.visible = true

5.3.3. Discussion

You can also instantiate the listener's Java interface using
the impl method, passing a block inside which the event is handled. This
approach is useful when the event handler interface contains multiple
methods. Example 5-4 shows how to intercept events from the menu
component.

Example 5-4. Events handled through an instance of a Java
interface
include Java
import javax.swing.JFrame

frame = JFrame.new
frame.default_close_operation = JFrame::EXIT_ON_CLOSE

bar = javax.swing.JMenuBar.new
menu = javax.swing.JMenu.new "File"
item = javax.swing.JMenuItem.new "Open"

menu.add_menu_listener(javax.swing.event.MenuListener.impl do
|method, evt|
 puts evt.class
 case method.to_s
 when "menuDeselected"
 puts 'hidden'
 when "menuSelected"
 puts 'visible'
 end
end)

menu.add item
bar.add menu
frame.jmenu_bar = bar
frame.pack
frame.visible = true

5.3.4. See Also

• Section 1.10"

5.4. Long-Running Tasks in Swing
Applications

5.4.1. Problem

The Swing event dispatching thread is responsible for drawing the user
interface and event handling. You want to execute a long-running task
that is initiated from a Swing event but allow the interface to remain
responsive and active.

5.4.2. Solution

The class javax.swing.SwingWorker is designed to run long-running jobs
while allowing for safe UI updates within the event dispatch thread. The
implementation has evolved over the years through several open source
projects and publications and was formally added to the core Java library
in Java 6. To use SwingWorker, you first create a new class that
extends SwingWorker. Next, implement the
required doInBackground method with your long-running action. Example
5-5 shows SwingWorker in action. Note that the button component is a
member of the worker class because the variable is not accessible within
the scope of the new class.

Example 5-5. Using the SwingWorker for long-running jobs
include Java
import javax.swing.JFrame

frame = JFrame.new "Swing Worker"
frame.default_close_operation = JFrame::EXIT_ON_CLOSE

start = javax.swing.JButton.new("start")

#define the function using a block
start.add_action_listener do |evt|
 class MySwingWorker < javax.swing.SwingWorker
 attr_accessor :button
 def doInBackground
 10.times do
 puts "thread #{self.hashCode} working"
 sleep(1)
 end
 self.button.text = "Completed"
 end
 end

 sw = MySwingWorker.new
 sw.button = start
 sw.execute
end

frame.add start
frame.pack
frame.visible = true

5.4.3. Discussion

As of version 1.1, JRuby cannot instantiate abstract Java classes, so you
must subclass SwingWorker to provide the implementation of the abstract
methods. This is one of the few areas were JRuby results in less fluid and
elegant code than its Java counterpart, but the JRuby team is working on
improving support for abstract classes in future versions of JRuby.

SwingWorker has optional methods that provide advanced features, such
as incremental job progress, job cancellation, and completion detection.
Explore the API and overload the optional methods in your Ruby class to
use these features.

There is a version of SwingWorker for Java 5 that is conceptually similar
to the Java 6 version, but does not make use of Java generics and uses
slightly different method names. For example, the construct method in
the Java 5 class is analogous to the doBackground method in the Java
6's SwingWorker.

5.4.4. See Also

• Section 1.10"
• Java

5 SwingWorker, http://java.sun.com/products/jfc/tsc/articles/threa
ds/src/SwingWorker.java

5.5. Packaging Standalone Applications

5.5.1. Problem

You want to package your JRuby application as an executable JAR file,
Windows executable, or Mac OS X application.

5.5.2. Solution

Install the Rawr gem. This gem was created by David Koontz to simplify
the packaging of JRuby applications for Windows, Mac, Linux, and Java
environments:

$ jruby –S gem install rawr

Set up the Rawr build environment by running the rawr
install command in your build folder, usually the top level of your
project folder:

$ cd /projects/rawrdemo
$ jruby –S rawr install

This command creates two
files: build_configuration.yaml and src/org/rubyforge/rawr/Main.java, a
Java class that instantiates a JRuby runtime and executes your Ruby
application's script. Copy your JRuby application's files into the newly
created src folder. If your project depends upon custom Java classes,
package those class files into a JAR file and place your project JAR file
along with any JAR files upon which your application depends in
the lib/java folder. You must also have the jruby-complete.jar file in
the lib/java folder.

Open the build_configuration.yaml file and set
the project_name parameter to the name you would like for the final
executable. Change the main_ruby_file parameter to the application's
main execution script name or rename the file to the default script
name, main.rb. Example 5-6 shows a sample configuration file.

Example 5-6. Example Rawr configuration file
Name of the created jar file
project_name: jruby_cookbook_app

Ruby file to invoke when jar is started
main_ruby_file: jruby_cookbook_main

5.5.2.1. Executable JAR

Run the rawr:jar Rake task to generate an executable JAR file:

$ jruby –S rake rawr:jar

The resulting files can found in the package/deploy directory. This
includes the main executable JAR file jruby_cookbook_app.jar, a
configuration file, and the JRuby runtime JAR file. You will need to include
all the files in the folder along with the JAR files when you distribute your
application. To test the JAR file, run:

$ java –jar package/deploy/jruby_cookbook_app.jar

5.5.2.2. Windows executable

Run the rawr:bundle:exe Rake task to generate a Windows executable:

$ jruby –S rake rawr:bundle:exe

The Windows application is composed of an exe file, several JAR files, and
a configuration file found in
the package/native_deploy/windows directory. Distribute and install the
entire contents of the folder and not just the exe file.

5.5.2.3. Mac OS X application

Run the rawr:bundle:app Rake task to create a Mac OS X application:

$ jruby –S rake rawr:bundle:app

The bundled OS X application folder is called project_name.app and can
be found in the package/native_deploy/mac directory.

5.5.3. Discussion

The build_configuration.yaml file is well documented and contains many
options to customize the build. There are parameters to set the build's
classpath, the location of the Java and JRuby source files, library file
paths, and the destination folder of the resulting executables. You can
also include arbitrary data or media files in your application by setting
the jars_data_dirsparameter.

Use Rake's -T flag to get a complete list of Rawr's tasks.
The rawr:clean task would be a good task to run before each build to
avoid bundling unwanted files.

$ jruby –S rake -T
rake rawr:bundle:app # Bundles the jar from rawr:jar into a
native Mac O...
rake rawr:bundle:exe # Bundles the jar from rawr:jar into a
native Windo...
rake rawr:bundle:web # Bundles the jar from rawr:jar into a
Java Web Sta...

rake rawr:clean # Removes the output directory
rake rawr:compile # Compiles all the Java source files in
the directo...
rake rawr:jar # Uses compiled output and creates an
executable ja...
rake rawr:prepare # Creates the output directory and sub-
directories,...
rake rawr:setup_consts # Sets up the various constants used by
the Rawr bu...

5.5.4. See Also

• Section 3.2"
• Section 5.10"
• Rawr website, http://gitorious.org/projects/rawr

5.6. Packaging JRuby Web Start Applications

5.6.1. Problem

You want to package your JRuby program as a Java Web Start
application.

5.6.2. Solution

Install the Rawr gem. See Section 5.5 for instructions on how to use and
configure the gem. Because of the Web Start security model and JRuby's
use of the VM, the main JAR file and the JRuby runtime JAR file must be
signed to run in the Web Start security sandbox. Start by generating a
keystore file named myKeystore with the alias myself. Enter a password
and other information when prompted:

$ keytool -genkey -keystore myKeystore -alias myself
Enter keystore password: dumbpassword
What is your first and last name?
 [Unknown]: Henry Liu
What is the name of your organizational unit?
 [Unknown]: Global Digital
What is the name of your organization?
 [Unknown]: MTV Networks
What is the name of your City or Locality?
 [Unknown]: New York
What is the name of your State or Province?

 [Unknown]: NY
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=Henry Liu, OU=Global Digital, O=MTV Networks, L=New York,
ST=NY, C=US
correct?
 [no]: yes

Enter key password for <myself>
 (RETURN if same as keystore password):

Using your newly created keystore, create a self-signed certificate with
the selfcert option:

$ keytool -selfcert -alias myself -keystore myKeystore

Edit the build_configuration.yaml file and create a hash
named web_start containing the key self_sign with the value true and
a self_sign_passphrase key whose value is set to the certificate's
password. Create a hash named jnlp with the required values
for codebase, description, vendor, and homepage_href. Example 5-
7 shows how to define YAML hashes in your configuration file.

Example 5-7. Web Start parameters in Rawr configuration file
web_start: { self_sign: true, self_sign_passphrase: password }

jnlp: {
 codebase: http://localhost:8080,
 description: My Webstart Demo,
 vendor: Your Name,
 homepage_href: http://www.ora.com
 }

Sign the JRuby runtime JAR file and other included JAR files that access
the native system, use network services, or produce security errors:

$ jarsigner –keystore myKeystore –storepass password
lib/java/jruby-complete.jar

Run the rawr:bundle:web Rake task to generate your Web Start
application:

$ jruby –S rake rawr:bundle:web

The application is found in the package/native_deploy/web directory.
Move all the files to your web server's distribution folder and launch the
web start application by opening JNLP file in your browser. For example, if
your web server was running on localhost using port 8080, you would
use the URL http://localhost:8080/jruby_cookbook.jnlp.

5.6.3. Discussion

You can use the file:// URL prefix with the javaws tool to test your Web
Start without having to use to the web server or browser. Set
the codebase value to the deployment directory in
yourbuild_configuration.yaml file, as seen here, and rebuild
your application:

codebase: file:///C:/rawrdemo/package/native_deploy/web

Launch your Web Start application with the javaws command:

$ javaws package\native_deploy\web\jruby_cookbook.jnlp

Remember to change the codebase value to a web address when you
deploy your application.

5.6.4. See Also

• Section 5.5"

5.7. Creating JRuby Applets

5.7.1. Problem

You want to create a Java applet using JRuby.

5.7.2. Solution

Working with an applet in JRuby is slightly different from creating a
desktop application because the Ruby code cannot instantiate its own
main application window but must add components to the parent applet's
content pane. One possible solution, shown in Example 5-8, is to expose
the content pane as a global variable to the JRuby runtime.

Example 5-8. JRuby applet with content pane in a global
variable
JRubyApplet.java

package org.jrubycookbook;

import java.util.ArrayList;
import org.jruby.Ruby;
import org.jruby.javasupport.*;
import java.awt.Container;
import org.jruby.runtime.builtin.IRubyObject;
import org.jruby.runtime.*;

public class JrubyApplet extends javax.swing.JApplet {
 public void init(){
 Ruby runtime = JavaEmbedUtils.initialize(new
ArrayList<String>());
 runtime.evalScriptlet("require \"java\"\nclass
FreshForJava\nend\n");
 final IRubyObject blankRuby =
runtime.evalScriptlet("FreshForJava.new");
 IRubyObject globValue =
JavaUtil.convertJavaToRuby(runtime,
 this.getContentPane());
 globValue = Java.java_to_ruby(blankRuby, globValue,
Block.NULL_BLOCK);
 GlobalVariable gv = new GlobalVariable(runtime,
"$content_pane",
 globValue);
 runtime.defineVariable(gv);
 String bootRuby = "require 'appletmain' \n";
 runtime.evalScriptlet(bootRuby);
 }

}

appletmain.rb

include Java

import javax.swing.JPanel
import javax.swing.JButton

jp = JPanel.new
but = JButton.new("OK")
but.add_action_listener do |evt|
 puts "pressed"
end
jp.add(but)
$content_pane.add(jp)

Package the Ruby scripts with your Java classes into a JAR file and then
reference that JAR file from inside an HTML applet tag. Include
the jruby-complete.jar with the JRuby runtime along with your application
JAR file through the archive parameter. Example 5-9 shows a
sample applet tag to be used in an HTML page.

Example 5-9. Applet tag for a JRuby applet
<applet width="200" height="200" align="baseline"
 code="org.jrubycookbook.JrubyApplet.class"
 codebase="."
pluginspage="http://java.sun.com/j2se/1.6.0/download.html"
 archive="jrubyapplet.jar,jruby-complete.jar">
</applet>

Java 6 update 10 introduced a new method of embedding an applet
through a JavaScript call. This technique is shown in Example 5-10.

Example 5-10. JavaScript applet deployment
<script src="http://java.com/js/deployJava.js"></script>
<script>
 deployJava.runApplet({codebase:"",
 archive:"jruby-complete.jar,jrubyapplet.jar",
 code:"org.jruby.JRubyApplet.class",
 width:"320", Height:"400"}, null, "1.6");
</script>

5.7.3. Discussion

An alternate approach, shown in Example 5-11, is for the
Swing Panel object to be created and returned from the JRuby script
execution. The appearance and behavior of the user interface is defined
by the MyPanel class found in the appletmainclass.rb file.

Example 5-11. JRuby applet, alternate implementation
JRubyApplet.java

public class JrubyApplet extends javax.swing.JApplet {
 public void init() {
 Ruby runtime =
JavaEmbedUtils.initialize(Collections.emtpyList());
 String bootRuby = "require 'appletmainclass' \n
MyPanel.new \n";
 IRubyObject ro = runtime.evalScriptlet(bootRuby);
 Container panel = (Container)JavaEmbedUtils.rubyToJava
(runtime, ro, Container.class);
 this.getContentPane().add(panel);
 this.setSize(100,100);
 }
}

appletmainclass.rb

include Java

class MyPanel < javax.swing.JPanel
 include_package 'javax.swing'

 def initialize
 super
 but = JButton.new("OK")
 but.add_action_listener do |evt|
 puts "pressed too"
 end
 add(but)
 end
end

The code becomes a bit simpler in a Java 6 or later environment with
JSR-223 support. The Java-to-JRuby object delegation code is eliminated
in Example 5-12, improving the readability of the code.

Example 5-12. JRuby applet using Java Scripting
package org.jrubycookbook;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
import java.awt.Container;

public class JrubyApplet extends javax.swing.JApplet {

 public void init(){
 ScriptEngine runtime = new
ScriptEngineManager().getEngineByName("jruby");
 String bootRuby = "require 'main' \n MyPanel.new \n";
 try{
 Container c = (Container)runtime.eval(bootRuby);
 this.getContentPane().add(c);
 this.setSize(100,100);
 } catch(ScriptException e) {
 e.printStackTrace();}

 }
}

Example 5-13 shows how to make the applet's content pane available as
a global variable through the JSR-223 API.

Example 5-13. Applet using Java Scripting and a global variable
public class JrubyApplet extends javax.swing.JApplet {

 public void init(){
 ScriptEngine runtime = new
ScriptEngineManager().getEngineByName("jruby");
 runtime.put("content_pane",this.getContentPane());
 String bootRuby = "require 'mainpassed' \n";
 try{
 runtime.eval(bootRuby);
 } catch(ScriptException e) {
 e.printStackTrace();
 }
 }
}

5.7.4. See Also

• Section 3.4"

5.8. Manipulating Images

5.8.1. Problem

You want to resize or otherwise modify an image using JRuby.

5.8.2. Solution

Use a JRuby-compatible image library such as RMagick4J or ImageVoodoo
for simple tasks like thumbnail generation. The Java 2D API can be used
when you need more advanced image-processing capabilities.

5.8.2.1. RMagick4J

RMagick is a gem frequently used by Ruby developers for thumbnail
generation or image editing but it requires the C-based ImageMagick
libraries. RMagick4J was created so JRuby developers could work with the
familiar API and allow their existing application to remain compatible
RMagic applications. Start by installing the RMagick4J gem:

$ jruby -S gem install rmagick4j

Example 5-14 demonstrates a simple thumbnail-creation operation. It
also shows how to make the library compatible with the RMagick gem by
using a small amount of platform-detection code to load the correct gem
before including the appropriate gem.

Example 5-14. Creating thumbnails with RMagick4J
require 'rubygems'
gem defined?(JRUBY_VERSION) ? 'rmagick4j' : 'rmagick'
require 'RMagick'
include Magick

img = Image.new "avatar.jpg"
thumb = img.resize(0.25)
thumb.write "avatar-thumb.jpg"

RMagick4J has implemented most, but not all, of the functions from the
original RMagick gem. The team has stated though they have a goal to
provide complete compatibility with the C-based RMagick gem in the
future.

5.8.2.2. ImageVoodoo

ImageVoodoo was created by JRuby core team members Tom Enebo and
Nick Sieger. Its original purpose was to be an API-compatible JRuby
implementation of Ryan Davis's ImageScience library, another widely
used Ruby library for image processing. Begin by installing the
ImageVoodoo gem:

$ jruby -S gem install image_voodoo

Example 5-15 shows how to create a thumbnail image using the library.

Example 5-15. Creating thumbnails with ImageVoodoo
require 'image_voodoo'

ImageVoodoo.with_image('logo-240-480.jpg') do |img|
 img.thumbnail(240) do |img|
 img.save "logo-120-240.jpg"
 end
end

The ImageVoodoo gem includes the image_science.rb file to provide
compatibility with existing ImageScience code. If you open the file, you'll
see that ImageScience class simply references to
theImageVoodoo class. Example 5-16 shows how we can replace our
ImageVoodoo references in Example 5-15 with the ImageScience-
equivalent code. By using the ImageScience class name, the code is
completely portable between a C-Ruby and JRuby interpreter.

Example 5-16. ImageScience example
require 'image_science'

ImageScience.with_image('logo-240-480.jpg') do |img|
 img.thumbnail(100) do |img|
 img.save "logo-120-240-imagescience.jpg"
 end
end

With each new version of the gem, the ImageVoodoo team has added
additional image-processing capabilities to the library such as color
conversion, brightness, and grayscale. Example 5-17uses the
new from_url method to load an image from the Web and then process

that image through a series of filters. The preview method in the
example opens the image in a window; this is a helpful tool for rapid
debugging or tweaking filter settings.

Example 5-17. ImageVoodoo extended features
require 'image_voodoo'

ImageVoodoo.from_url("http://www.google.com/intl/en_ALL/images/lo
go.gif") do |img|
 img.adjust_brightness(1.4,30) do |img3|
 img3.greyscale do |img4|
 img4.negative do |img5|
 img5.preview
 end
 end
 end
end

5.8.3. Discussion

Use the Java 2D API for low-level or custom image processing. The code
shown in Example 5-18 produces the highest quality thumbnail by
utilizing a common softening technique. The quality comes at the expense
of the CPU because of the additional necessary image processing.

Example 5-18. Java 2D API thumbnail generation
include Java

import java.awt.Image
import java.awt.image.BufferedImage
import java.awt.image.ConvolveOp

quality = 0.5
newWidth = 300
i = javax.swing.ImageIcon.new("source-image.jpg").image
newImg, i_w, i_h = nil, i.width, i.height

if (i_w > i_h)
 newImg = i.getScaledInstance(newWidth, (newWidth * i_h)/i_w,
Image::SCALE_SMOOTH)
else
 newImg = i.getScaledInstance((newWidth * i_h)/i_w, newWidth,
Image::SCALE_SMOOTH)
end
tmp =(javax.swing.ImageIcon.new(newImg)).image

Create a BufferedImage for the filter.
bufferedImage = BufferedImage.new(tmp.width,
tmp.height,BufferedImage::TYPE_INT_RGB)
g = bufferedImage.createGraphics()

g.color = java.awt.Color::white
g.fillRect(0, 0, tmp.width, tmp.height)
g.drawImage(tmp, 0, 0, nil)
g.dispose()

Apply softening filter.
softFact = 0.05
softArray = [0, softFact, 0, softFact, 1-(softFact*4), softFact,
0, softFact, 0]
kernel = java.awt.image.Kernel.new(3, 3,
softArray.to_java(:float))
op = ConvolveOp.new(kernel, ConvolveOp::EDGE_NO_OP, nil);
bufferedImage = op.filter(bufferedImage,nil)

Write the file.
out = java.io.FileOutputStream.new("output.jpg")
encoder =
com.sun.image.codec.jpeg.JPEGCodec::createJPEGEncoder(out)
param = encoder.getDefaultJPEGEncodeParam(bufferedImage)
param.setQuality(quality, true)
encoder.setJPEGEncodeParam(param)
encoder.encode(bufferedImage)
puts "finished"

5.8.4. See Also

• ImageScience
website, http://seattlerb.rubyforge.org/ImageScience.html

• RMagick website, http://rmagick.rubyforge.org/
• RMagick4J website, http://code.google.com/p/rmagick4j/

5.9. Creating SWT Applications

5.9.1. Problem

You want to create SWT applications using JRuby. The Standard Widget
Toolkit (SWT) is probably the most popular Java client technology after
the AWT and Swing libraries. It is open source software and is best known
as the user interface framework used throughout the Eclipse IDE.

5.9.2. Solution

Download the SWT library and include the swt.jar in your classpath or use
the require method to load the JAR file from your Ruby application.
JRuby integrates nicely with
theorg.eclipse.swt.Shell and org.eclipse.swf.widgets.Display cla
sses and is able to access all the UI widgets in the library. The code
in Example 5-19 demonstrates how to handle button events in an SWT
application.

Example 5-19. Simple JRuby SWT application
include Java
require 'swt'

import org.eclipse.swt.SWT
import org.eclipse.swt.layout.RowLayout
import org.eclipse.swt.widgets.Listener

d = org.eclipse.swt.widgets.Display.new
s = org.eclipse.swt.widgets.Shell.new(d)
but = org.eclipse.swt.widgets.Button.new(s, SWT::PUSH)
but.text = "Search"
l = org.eclipse.swt.widgets.Label.new(s,SWT::NONE)
l.text = "Click to Search"
l.set_size(100,75)

but.addListener(SWT::Selection, Listener.impl do |method, evt|
 l.text = 'searching...'
end)

s.layout = RowLayout.new
s.set_size(300,200)
s.open

while(!s.is_disposed) do d.sleep if(!d.read_and_dispatch) end
d.dispose

5.9.3. Discussion

The Glimmer project is a JRuby DSL for creating SWT applications using a
declarative syntax. It was created by Andy Maleh and is an official Eclipse
project. Install the Glimmer gem with this command:

$ jruby –S gem install glimmer

The gem provides a custom DSL for composing SWT applications. It has a
declarative style, using keywords and accompanying blocks to define
containers as well as individual components. The widget's models and
event handlers can be associated to Ruby methods for custom event
processing and state changes. You can see an example of the Glimmer
DSL in Example 5-20.

Example 5-20. Writing an SWT application with Glimmer
include Java
require File.dirname(__FILE__) + "/../src/swt"

include Glimmer
import 'org.eclipse.swt.layout.GridLayout'

def user_name
 "default text"
end

def enabled
 true
end

@shell = shell {
 text "SWT"
 composite {
 layout GridLayout.new(2, false) #two columns with differing
widths
 label { text "Hello World!"}
 text {
 text bind(self, :user_name)
 enabled bind(self, :enabled)
 }
 }
}
@shell.open

5.9.4. See Also

• Section 5.11"
• Section 5.12"
• SWT website, http://www.eclipse.org/swt/
• Glimmer website, http://rubyforge.org/projects/glimmer/

5.10. Accessing the Native Desktop

5.10.1. Problem

You want to create or communicate with a native application.

5.10.2. Solution

You can access a limited set of commonly used features in the native
desktop through the java.awt.Desktop class introduced in Java 6.

The Desktop class does not provide access to the entire desktop, but does
allow you to perform common desktop activities such as opening the
default browser, launching the default mail client, as well as printing or
opening a file with its default application (Example 5-21).

Example 5-21. Java Desktop API

include Java
import java.awt.Desktop
import java.net.URI
import java.io.File

d = Desktop::desktop

Open the browser
d.browse(URI.new("http://www.ora.com/")) if
d.isSupported(Desktop::Action::BROWSE)

Open your mail client and compose a message
d.mail(URI.new("mailto:jruby@ora.com")) if
d.isSupported(Desktop::Action::MAIL)

Launch the default jpg viewing application
d.open(File.new("conference_pic_1.jpg")) if
d.isSupported(Desktop::Action::OPEN)

Print a document
d.print(File.new("directions.twxt")) if
d.isSupported(Desktop::Action::PRINT)

5.11. Accessing the System Tray

5.11.1. Problem

You want to use JRuby to create an application that runs in the Mac OS X,
Windows, or KDE system tray.

5.11.2. Solution

5.11.2.1. Swing

You can access the Windows or Linux system tray through the
Java java.awt.SystemTray class, added in Java 6, as in Example 5-22.

Example 5-22. A Java system tray application
include Java

import java.awt.TrayIcon
import java.awt.event.MouseListener

if (java.awt.SystemTray::isSupported())

 tray = java.awt.SystemTray::system_tray
 image =
java.awt.Toolkit::default_toolkit.get_image("tray.gif")

 popup = java.awt.PopupMenu.new
 exititem = java.awt.MenuItem.new("Exit")
 exititem.addActionListener {java.lang.System::exit(0)}

 oraitem = java.awt.MenuItem.new("Go To ORA")
 oraitem.addActionListener do

java.awt.Desktop::desktop.browse(java.net.URI.new("http://www.ora
.com"))
 end

 popup.add(exititem)
 popup.add(oraitem)
 trayIcon = TrayIcon.new(image, "Tray Demo", popup)
 trayIcon.image_auto_size = true

 trayIcon.addActionListener do |evt|
 trayIcon.displayMessage("Action","Tray Action!", \
 TrayIcon::MessageType::WARNING)
 end

 trayIcon.addMouseListener(MouseListener.impl do |method, evt|
 puts "mouse event #{method.to_s}"
 end

 tray.add(trayIcon)
end

5.11.2.2. SWT

The SWT library also includes a class for accessing the system
tray: org.eclipse.swt.widgets.Tray (Example 5-23). This SWT widget
has the advantage of being available on the Windows, Linux, and Mac
platforms. The OS X implementation places an icon in the desktop's
status area.

Example 5-23. SWT system tray application
include Java
require 'swt-debug'

import org.eclipse.swt.SWT
import org.eclipse.swt.widgets.Listener
import org.eclipse.swt.widgets.MenuItem

d = org.eclipse.swt.widgets.Display.new
s = org.eclipse.swt.widgets.Shell.new(d)
image = org.eclipse.swt.graphics.Image.new(d, "tray.gif")
tray = d.system_tray
item = org.eclipse.swt.widgets.TrayItem.new(tray, SWT::NONE)
item.tool_tip_text = "SWT TrayItem"

item.addListener(SWT::DefaultSelection, Listener.impl do |evt|
 puts("default selection")
end)

menu = org.eclipse.swt.widgets.Menu.new(s, SWT::POP_UP)
menuitem = MenuItem.new(menu, SWT::PUSH)
menuitem.text = "Exit"

menuitem.addListener(SWT::Selection, Listener.impl do |method,
evt|
 s.close
end)

item.addListener(SWT::MenuDetect, Listener.impl do |method, evt|
 menu.visible = true
end)

item.image = image
exclude these parameters to hide the main window
#s.setBounds(10, 10, 100,100)
#s.open()
while(!s.is_disposed) do d.sleep if(!d.read_and_dispatch) end
image.dispose
d.dispose

5.11.3. See Also

• Section 5.9"

5.12. Swing Development with JRuby
Domain-Specific Languages

5.12.1. Problem

The trend toward declarative GUI design can be seen in the growth of
web applications and the transition of established technologies to
declarative models such as Adobe Flex and JavaFX Script. You want to
use a JRuby-based DSL to develop your Swing applications.

5.12.2. Solution

There are a several different projects that present DSLs for creating
Swing user interfaces.

5.12.2.1. Swiby

The Swiby project is a JRuby adaptation of the declarative GUI building
portion of the JavaFX Script language. Install the Swiby gem:

$ jruby –S gem install swiby

Swiby's syntax and design is inspired from JavaFX Script, in which blocks
are used to represent hierarchies of user interface containers and
components. Properties are defined by single-line name-value
declarations. The Swing and AWT class names are mapped to shorter,
more concise names used in the DSL. Swiby eliminates some of JavaFX
Script's capitalization when defining widgets and trailing colons after
property declarations. Example 5-24 shows Swiby in action.

Example 5-24. Simple Swiby application
require 'rubygems'
require 'swiby'
require 'swiby/form'

class LabelModel
 attr_accessor :text
end
model = LabelModel.new
model.text = "Click to Search"

f = frame {
 title "Swiby Example"
 width 300
 height 100

 content {
 panel :layout => :flow do
 button("Search") { model.text="Searching...."}
 label {label bind(model, :text)}
 end
 }
}
f.visible = true

The Swiby project has some features that aren't found in JavaFX Script,
like the ability to define your styles in an external file. The styles can be
loaded and applied with the simple use_stylesdeclaration. Example 5-
25 shows how to alter the font by creating and loading a file
named styles.rb.

Example 5-25. Defining Swiby styles
swibyapp.rb

frame {
 title "Swiby Example"
 width 300
 height 74
 use_styles "styles.rb"
 .
 .

styles.rb

create_styles {
 label(
 :font_family => Styles::VERDANA,
 :font_style => :italic,
 :font_size => 14,
 :color => 0xAA0000
)
}

The gem also provides a useful form-building DSL. This is geared toward
forms with simpler, grid-based layouts.

5.12.2.2. Cheri::Swing

The Cheri project is a framework that facilitates the creation of DSLs that
implement the Builder pattern to create a hierarchy of objects.
Cheri::Swing is one of these DSLs. Begin by installing the Cheri gem:

$ jruby -S gem install cheri

Its declarative syntax is very similar to Swiby and also provides access to
Swing components as well as the AWT's image and geometry
packages. Example 5-26 presents a Cheri application.

Example 5-26. Simple Cheri::Swing application
require 'rubygems'
require 'cheri/swing'
include Cheri::Swing

swing[:auto=>true]

f = frame('Cheri App') { |myframe|
 size 250,100

 flow_layout
 on_window_closing {|event| f.dispose}
 button('Search') {
 on_click {@l.set_text "Searching..."}
 }
 separator
 @l = label('Click to search')
}
f.visible = true

Setting the swing[:auto=>true] option allows you to eliminate
the swing prefix in the component
declaration: swing.frame becomes frame, etc.

5.12.2.3. Profligacy

The Profligacy library was created by Zed Shaw and takes a different
approach than Cheri and Swiby, as we'll see shortly. First, install the
Profligacy gem:

$ jruby –S gem install profligacy

Profligacy provides a custom DSL that includes a variety of time-saving
syntactical improvements, as shown in Example 5-27.

Example 5-27. Profligacy search demo
require 'rubygems'
require 'profligacy/swing'

class SearchDemo
 include_package 'javax.swing'
 include_package 'java.awt'
 include Profligacy

 def initialize
 @ui = Swing::Build.new JFrame, :search, :lab do |c,i|
 c.search = JButton.new "Search"
 c.lab = JLabel.new "Click to Search"
 i.search = { :action => proc {|t,e| c.lab.text =
"Searching..." } }
 end

 @ui.layout = FlowLayout.new
 @ui.build("Layout").default_close_operation =
JFrame::EXIT_ON_CLOSE
 end
end

SwingUtilities.invoke_later lambda { SearchDemo.new }

Profligacy uses a custom layout language named LEL where you create
something that resembles ASCII art to create a layout with named
component spaces (Example 5-28).

Example 5-28. Profligacy LEL demo
require 'rubygems'
require 'profligacy/swing'
require 'profligacy/lel'

class LelSearchTest
 include_package 'javax.swing'
 include Profligacy

 layout = "
 [search | _]
 [_ | lab]
 "

 ui = Swing::LEL.new(JFrame,layout) do |c,i|
 c.search = JButton.new "Search"
 c.lab = JLabel.new "Click To Search"
 i.search= { :action => proc {|t,e| c.lab.text =
"Searching..." } }
 end
 ui.build(:args => "LEL Search Example")
end

The brackets represent individual rows and the pipes character is a
column delimiter. Figure 5-1 shows the output after executing Example 5-
28.

Figure 5-1. LEL Search Demo user interface

5.12.3. See Also

• Cheri website, http://cheri.rubyforge.org/
• Swiby website, http://swiby.codehaus.org/
• Profligacy website, http://ihate.rubyforge.org/profligacy/

5.13. Using the Monkeybars Framework for
Swing Development

5.13.1. Problem

You want to develop a Swing application while following the model-view-
controller (MVC) pattern.

5.13.2. Solution

Use Monkeybars, a library created by David Koontz, the author of Rawr. It
uses the MVC design pattern, similar to web frameworks like Rails or
Struts, to create JRuby client applications. Start by installing the
Monkeybars gem:

$ jruby –S gem install monkeybars

The gem will add the Monkeybars tool to your JRuby execution path. This
is similar to the rails command used by Ruby on Rails developers.
Running monkeybars creates the main project folder and the project
skeleton:

$ jruby –S monkeybars search_demo

Example 5-29 includes a Java class that we will use with Monkeybars.
This class extends JFrame and contains a button with some accompanying
text. The file should be located in the src.

Example 5-29. Java GUI class for use with Monkeybars
import javax.swing.*;

public class SearchDemoJava extends JFrame {
 private JLabel message = new JLabel("Click to search");
 private JButton search = new JButton("Search");

 public SearchDemoJava(){
 this.setLayout(new java.awt.FlowLayout());
 this.setSize(300,100);
 add(search);
 add(message);
 }
}

The event-handling code and model data is defined in Ruby code.
The generate Rake task, which was added along with the Monkeybars
JAR file and several Ruby classes when the project was generated, is used
to create the new model, view, and controller classes. Use
the ALL parameter to create all these at once:

$ cd search_demo
$ jruby –S rake generate ALL="src/search"
(in C:/projects/search_demo)
Generating controller SearchController in file
search_controller.rb
Generating model SearchModel in file search_model.rb
Generating view SearchView in file search_view.rb

The model class uses an instance variable to store messages that are
displayed in the text label (Example 5-30). The variable is later mapped
to a GUI component in the complementing view file.

Example 5-30. Monkeybars model file
class SearchModel
 attr_accessor :search_message
 def initialize
 @search_message = "Starting"
 end
end

Open the search_view.rb file and assign the SearchDemoJava class as
your view's display component by calling the set_java_class method.
Use the map method to bind the model's instance variable to the text
property of the label so that modifications to the model class will be
reflected in the view component. The modified view class can be seen
in Example 5-31.

Example 5-31. Monkeybars view class
class SearchView < ApplicationView
 set_java_class 'SearchDemoJava'
 map :model => :search_message, :view => "message.text"
end

The controller class is responsible for defining the view and model
objects, event-handling, and managing the state of the application.
Open search_controller.rb and you will see that the generator has already
defined the view and model classes. It is still necessary to add the event-

handling function for the search button. The search controller intercepts
events from the view and directs them to a function that incorporates the
instance variable name of the source, search, and the lowercase form of
the event's Java type, action_performed. This is another inspiration from
Rails and convention over configuration design. Example 5-32 shows the
modified controller class.

Example 5-32. Monkeybars controller class
class SearchController < ApplicationController
 set_model 'SearchModel'
 set_view 'SearchView'
 set_close_action :exit

 def search_action_performed
 model.search_message = "Searching..."
 update_view
 end
end

Note that the new text value is set in Ruby model and not in the Java
component. The update_view method redraws the GUI components,
which then reevaluate the view mapping and display the new message.

Install the Rawr gem and run the rawr install command in your
project's root directory. Edit the src/main.rb file and add a hook into your
application by creating an instance of the controller class (Example 5-33).

Example 5-33. Monkeybars main execution file
begin
 # Your app logic here, i.e. YourController.instance.open
 require 'search_demo/search_controller'
 SearchController.instance.open
rescue Exception => e

Download or build a copy of jruby-complete.jar and place the file in
the lib/java directory. Bundle the application as an executable JAR by
calling the rawr:jar Rake task from the project's root directory:

$ jruby –S rake rawr:jar

By default, this produces a JAR file in the package/deploy directory. You
can modify the name of the final JAR file by editing

Rawr's build_configiruation.yaml file. Test the new application by running
the JAR:

$ java –jar package/deploy/change_me.jar

5.13.3. Discussion

Example 5-31 showed the use of a UI component defined in Java, but you
may want to use JRuby or a framework to generate the user interface.
The class defined in Example 5-34 is fundamentally the same as that
from Example 5-29.

Example 5-34. UI component defined in JRuby
include Java

class SearchDemoRuby < javax.swing.JFrame
 attr_accessor :search, :message
 def initialize
 super
 self.layout = java.awt.FlowLayout.new
 add(@search = javax.swing.JButton.new("search"))
 add(@message = javax.swing.JLabel.new("Click to Search"))
 self.set_size(300,100)
 end
end

This example really demonstrates how the loose coupling between the
components makes the view layer easily interchangeable. The view file is
the only file in the MVC portion of the app that will need to be modified.
Monkeybars support for Ruby-defined components is a little less elegant
than the Java support but is expected to improve in the future. Remove
the old set_java_classdeclaration and assign a new instance of the
Ruby GUI class to the @main_view_component variable. This is shown
in Example 5-35. Be sure to call the parent's constructor when overriding
the view's default constructor.

Example 5-35. Monkeybars view class that uses a JRuby UI
component
class SearchView < ApplicationView
set_java_class "SearchDemoJava"
 def initialize
 super
 @main_view_component = SearchDemo.new
 end
 def search
 @main_view_component.search
 end
 def message
 @main_view_component.message
 end
 map :model => :search_message, :view => "message.text"
end

In addition, you need to edit the main.rb file in order to have it load the
JRuby GUI class:

begin
 # Your app logic here, i.e. YourController.instance.open
 require 'search_demo_ruby'
 require 'search_demo/search_controller'
 SearchController.instance.open
rescue Exception => e

Once this is in place, you can generate a new executable JAR file with
Rawr and test your application.

5.13.4. See Also

• Monkeybars home page, http://monkeybars.rubyforge.org/
• Section 5.5"

5.14. Creating Qt Applications with JRuby

5.14.1. Problem

You would like to use JRuby to build applications using the Qt GUI
framework. Qt is a popular cross-platform application framework for
creating user interfaces. It has a rich set of components such as the Web
Browser and System Tray widgets.

5.14.2. Solution

The Qt Jambi project lets developers leverage the Qt framework through
Java. Qt Jambi is available for download
from http://trolltech.com/downloads/. Download the platform-
specific bundle and add the files qtjambi-version.jar and qtjambi-
platform-version.jar to your classpath.

Qt::JRuby is a library that brings several nice integration features when
working directly with the Qt Jambi library from JRuby including a DSL for
Qt. To use Qt::JRuby, you need to build the library from source. First, get
the latest version of Qt::JRuby from its Git repository. Then, use Rake to
build qtjruby-core.jar and install the wrapper RubyGem:

$ git clone git://github.com/nmerouze/qtjruby.git
Initialize qtjruby/.git
Initialized empty Git repository in /home/henry/qtjruby/.git/
remote: Counting objects: 391, done.
remote: Compressing objects: 100% (182/182), done.
Receiving objects: 100% (391/391), 59.30 KiB | 78 KiB/s, done.
Resolving deltas: 100% (180/180), done.
$ cd qtjruby/qtjruby-core
$ jruby –S rake
(in /home/henry/qtjruby/qtjruby-core)
ant -lib /opt/jruby-1.1.2/bin/../lib
Buildfile: build.xml

qtjruby-core:
 [javac] Compiling 14 source files to
C:\home\devel\qtjruby\qtjruby-core\build
 [javac] Note: Some input files use unchecked or unsafe
operations.
 [javac] Note: Recompile with -Xlint:unchecked for details.
 [jar] Building jar: C:\home\devel\qtjruby\qtjruby-
core\lib\qtjruby-core.ja
r

BUILD SUCCESSFUL
Total time: 1 second
WARNING: no rubyforge_project specified
WARNING: RDoc will not be generated (has_rdoc == false)
 Successfully built RubyGem
 Name: qtjruby-core
 Version: 0.2.0
 File: qtjruby-core-0.2.0.gem
 /opt/jruby-1.1.2/bin/../bin/jruby -S gem install pkg/qtjruby-
core-0.2.0.gem
Successfully installed qtjruby-core-0.2.0
1 gem installed

The Qt::JRuby library includes a Ruby module named Qt that allows you
to reference the Qt Jambi classes without a package name or the Q prefix.
For example, the classcom.trolltech.qt.gui.QPushButton can simply
be referred to as Qt::PushButton. This is an admittedly small detail, but
one that makes code clearer and more readable. The library also maps Qt
signals into blocks, similar to a technique used with JRuby Swing event
handlers. Example 5-36 contains a basic Qt::JRuby application.

Example 5-36. Qt::JRuby application
Qt::Application.initialize(ARGV)
window = Qt::Widget.new
window.resize(300, 200)
l = Qt::HBoxLayout.new
window.window_title = 'QTJRuby Example'
window.layout = l

quit = Qt::PushButton.new("Search", window)
quit.font = Qt::Font.new("Times", 14,
Qt::Font::Weight::Bold.value)

searchlab = Qt::Label.new("Click to Search", window)
quit.clicked { searchlab.text = "Searching..." }

l.add_widget quit
l.add_widget searchlab

window.show
Qt::Application.exec

Start the application with this command:

$ jruby -S qtjruby qt_search_demo.rb

5.14.3. Discussion

You can also avoid the call to qtjruby by including its contents, a
reference to the qtjruby-core.jar file and gem-loading logic, in your
application. This may be useful when packaging your code as a
redistributable application:

require 'qtjruby-core'

gem_path = Qt::JRuby.root / 'gems'
if File.exist? gem_path
 Gem.clear_paths
 Gem.path.unshift(gem_path)
end

Qt::Application.initialize(ARGV)
window = Qt::Widget.new
...

This example can now be run directly:

$ jruby qt_search_demo.rb

There is a DSL for Qt JRuby currently under development. It's pretty
experimental and the API may change with the early releases. Start by
building and installing the qtjruby-dsl gem:

$ cd qtjruby/qtjruby-dsl
$ jruby –S rake

The browser widget example that is distributed with Qt::JRuby nicely
demonstrates the capabilities of the DSL (Example 5-37). Again, the
component names are shortened and blocks are used to represent
container relationships and service events.

Example 5-37. Qt::JRuby experimental DSL
require 'rubygems'
require 'qtjruby-dsl'

Qt.app do
 window :id => 'main' do
 create :browser_win, :type => :browser
 create :le_address, :type => :line_edit

 hbox do
 le_address
 button('Go').clicked do
 browser_win.load le_address.text
 end
 end

 browser_win.load 'http://www.ora.com'
 end
end

5.14.4. See Also

• Qt Jambi
website, http://trolltech.com/products/qt/features/language-
support/java

• Qt::JRuby blog, http://qtjruby.org/blog
• Git website, http://git.or.cz/

Chapter 6. Build Tools

Introduction

Adding Ruby Scripting to Ant Builds

Using Ruby in Ant Conditions

Writing an Ant Task in Ruby

Adding Ruby Scripting to Maven Builds

Writing a Maven Plugin with JRuby

Building Java Projects with Raven

Referencing Libraries with Raven

Hosting a Private Raven Repository

Running JUnit Tests with Raven

Building Java Projects with Buildr

Referencing Libraries with Buildr

Building with Rake Inside Hudson

Adding Ruby Script to a Hudson Job

6.1. Introduction

Just about every software project, regardless of language or scope, needs
to be built in some way. The build process can include steps including
compiling code, running automated tests, file processing, packaging, and
deployment, among others. Because there is significant commonality
among build processes, a variety of specialized build systems are
available. These systems allow you to describe your build process as a
series of interdependent, reusable tasks. Ant, for example, allows you to
replace this:

$ javac *.java
$ jar –cf my.jar *.class

With this:

$ ant jar

Or even (if jar is the default target):

$ ant

This chapter discusses techniques for building Java-based projects. In this
context, Ruby can be used as the core of the build process or to enhance
an existing build process. There are two major build systems used for
Java projects: Ant and Maven. Both of these are projects of the Apache
Software Foundation and both have extension mechanisms that support
JRuby. This is the focus of the first few recipes. The later recipes describe
two different Ruby-based build systems designed for Java projects: Raven
and Buildr. All four of these build systems have merit: which to use for a
particular project is largely a matter of preference. Raven and Buildr are
significantly newer than Ant and Maven and, as a result, the communities
around them are smaller.

The chapter ends with two recipes about the Hudson continuous
integration server. The first of these addresses how to build Ruby projects
that use the Rake build system. The second looks at using Ruby to add
additional scripting to your build process inside Hudson.

6.2. Adding Ruby Scripting to Ant Builds

6.2.1. Problem

You are using Apache Ant as a build system and need to add some logic
to your build that isn't easily accomplished with Ant's XML syntax.

6.2.2. Solution

Add the appropriate JRuby dependencies to Ant's lib directory and use
the script task to include Ruby code inside your Ant build file. Example
6-1 shows a very simple usage of this task.

Example 6-1. Hello World from JRuby inside Ant
<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="package">
 <target name="simple">
 <script language="ruby">
 print "Hello World!"
 </script>
 </target>
</project>

6.2.3. Discussion

This task can use either the Bean Scripting Framework (BSF) or the Java
Scripting (JSR 223) libraries discussed in Chapter 3 and, as a result,
supports many more scripting languages than just Ruby. To use this task,
you must make the appropriate dependencies available to Ant. For BSF,
these dependencies are jruby.jar and bsf.jar, both included in the JRuby
distribution's lib directory. For Java Scripting, you need the jruby.jar file
from the JRuby distribution and jruby-engine.jar, available
from https://scripting.dev.java.net/. Section 3.3 and Section 3.4 contain
more information about these APIs. As mentioned in the Solution above,
these JAR files can be placed in Ant's lib directory. Alternatively, the
dependencies can be declared inside the Ant build file as seen in Example
6-2. This latter method requires slightly more configuration, as you need
to set up the appropriate Ant properties—
jruby.home and jsr223.engines.home in the case of Example 6-2. In
this example, those properties are defined in a build.properties file in the
user's home directory.

Example 6-2. Defining JRuby dependencies inside the Ant file
<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="package">

 <property file="${user.home}/build.properties" />
 <path id="jruby">
 <fileset file="${jruby.home}/lib/jruby.jar" />
 <fileset file="${jsr223.engines.home}/lib/jruby-
engine.jar" />
 </path>

 <target name="simple">
 <script language="ruby" classpathref="jruby">
 print "Hello #{$project.getProperty('user.name')}"
 </script>
 </target>
</project>

Example 6-2 also shows that the Ant project object is available to Ruby
code as a global variable named $project. In addition to the project, all
Ant properties, references, and targets are also available. However, it is
frequently the case, as in Example 6-2, that the Ant property name
contains the period character. In these cases, you need to use
the getProperty() method to retrieve the values of these properties. If
the user's name was available through an Ant property
named user_name, we could instead have written:

print "Hello #{$user_name}"

Ant targets can be executed by calling their execute method. Example 6-
3 shows the usage of Ruby code inside Ant in order to express a complex
conditional. In this example, we want some additional deployment step to
be performed only when the build is run in a Continuous Integration (CI)
environment and when the CI server used is Hudson. These indicators are
passed into the Ant build using properties, which are then used by the
Ruby script.

Example 6-3. Calling an Ant target from Ruby
<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="package">

 <property name="src.dir" value="${basedir}/src" />
 <property name="output.dir" value="${basedir}/bin" />
 <property name="deploy.dir" value="${basedir}/deploy" />
 <property name="output.file"
value="${output.dir}/package.zip" />

 <target name="init">
 <mkdir dir="${output.dir}" />
 <mkdir dir="${deploy.dir}" />
 </target>

 <target name="package" depends="init">
 <zip destfile="${output.file}">
 <fileset dir="${src.dir}" />
 </zip>
 <script language="ruby" classpathref="jruby">
 <![CDATA[
 if ($cibuild == "true") && ($ciserver == "Hudson")
then
 $deploy.execute()
 end
]]>
 </script>
 </target>

 <target name="deploy">
 <echo>Deploying file ${output.file}</echo>
 <copy file="${output.file}" todir="${deploy.dir}"/>
 </target>

</project>

Your Ruby code can access other scripts or libraries. For example, the
deployment step in Example 6-3 could be done directly from Ruby code
using the FileUtils module from the Ruby Standard Library:

<![CDATA[
require 'fileutils'
if ($cibuild != true) && ($ciserver == 'Hudson') then
 puts "Deploying file
#{$project.getProperty('output.file')}..."
 FileUtils.cp $project.getProperty("output.file"),
 $project.getProperty("deploy.dir")
end
]]>

For this to work, you have to set the jruby.home system properties. This
can be done with the ANT_OPTS environment variable. On Windows, you
would run:

set ANT_OPTS=-Djruby.home="%JRUBY_HOME%"

On Linux or Mac OS X, you would use:

export ANT_OPTS=-Djruby.home="$JRUBY_HOME"

One final option to note is that you are not limited to including your Ruby
script inline inside the script task. The task supports an src attribute
that can contain the path to a script to be executed. Using an inline script
versus an external file is largely a matter of length—once you are
including more than 10 lines of code inline, it's probably a good idea to
extract the code into an external file. External script files can also be
useful if you need to reuse the same block of code in multiple Ant build
files.

6.3. Using Ruby in Ant Conditions

6.3.1. Problem

Your Ant build has some conditional execution that is best expressed with
Ruby code.

6.3.2. Solution

Set up the Ant classpath as described in Section 6.2 and use
the scriptcondition Ant condition element. This element is set up
similar to the script task described in Section 6.2. The key distinction is
that conditions are evaluated to produce a Boolean result. Typically, the
condition has a default value and the content of the condition would
override this as necessary. For example, the Ant fragment in Example 6-
4 will set a property named user_has_text_files to true if the user has
any text files in their home directory.

Example 6-4. Using scriptcondition
<target name="setup">
 <condition property="user_has_text_files">
 <scriptcondition language="ruby" value="false">
 cwd = Dir.pwd
 Dir.chdir $project.getProperty("user.home")
 $self.setValue(true) if Dir.glob("**/*.txt")
 Dir.chdir cwd
 </scriptcondition>
 </condition>
</target>

In Example 6-4, the default result of the condition is false. This result is
overridden to true by using the $self variable, which represents the
condition object itself. As with the script task discussed in Section 6.2,
the $project variable is set to the Ant Project object and all Ant
properties are available as variables in the Ruby script.

6.3.3. Discussion

Ant conditions can be combined with and, or, not, and xor condition
elements. Example 6-5 shows the combination of the condition
from Example 6-4 with one of Ant's built-in conditions, os. In this
example, we ensure that the user_has_text_files property is only set
on Windows systems.

Example 6-5. Combining scriptcondition with other Ant
conditions
<target name="setup">
 <condition property="user_has_text_files">
 <and>
 <os family="windows"/>
 <scriptcondition language="ruby" value="false">
 puts "hello"
 cwd = Dir.pwd
 Dir.chdir $project.getProperty("user.home")
 $self.setValue(true) if Dir.glob("**/*.txt")
 Dir.chdir cwd
 </scriptcondition>
 </and>
 </condition>
</target>

Ant exhibits "short-circuiting" behavior in that the second (and third and
fourth, etc.) conditions are only evaluated if necessary. For example, if
the fragment in Example 6-5 was executed on a non-Windows system,
the Ruby code would not actually be executed as the first condition (<os
family=windows"/>) evaluated to false. This can be a useful thing to
keep in mind, as some conditions take longer to evaluate than others.

6.4. Writing an Ant Task in Ruby

6.4.1. Problem

You want to execute a Ruby script in multiple Ant build files.

6.4.2. Solution

Use Ant's scriptdef task to create a new task definition that executes a
Ruby script. The scriptdef task has a child element named attribute,
which can be used to pass attributes into the task. Example 6-6 defines
an Ant task named start-webrick that can be used to start up an
instance of the WEBrick HTTP server given a specific port number and
document root.

Example 6-6. Using scriptdef to define a new Ant task

<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="start">

 <scriptdef name="start-webrick" language="ruby">
 <attribute name="port"/>
 <attribute name="root"/>
 <![CDATA[
 require 'webrick'
 include WEBrick

 server = HTTPServer.new(:Port =>
$attributes.get('port').to_i)
 server.mount("/", HTTPServlet::FileHandler,
$attributes.get('root'))
 server.start
]]>
 </scriptdef>

 <target name="start">
 <start-webrick port="8000" root="${basedir}/files"/>
 </target>

</project>

6.5. Adding Ruby Scripting to Maven Builds

6.5.1. Problem

You are using Apache Maven as a build system and need to quickly add
some additional steps to your build process.

6.5.2. Solution

Configure the JRuby Maven plugin in your Maven project definition
file, pom.xml. Example 6-7 shows the use of this plugin. In this example,
the plugin's run goal, which executes a Ruby script, is bound to
the process-resources phase. This means that the inline Ruby script will
be run before any compilation or tests occur.

Example 6-7. Using the JRuby Maven plugin
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.jrubycookbook</groupId>
 <artifactId>maven-sample</artifactId>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>jruby-maven-plugin</artifactId>
 <executions>
 <execution>
 <phase>generate-resources</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <ruby>
 require 'fileutils'
 FileUtils.touch
'target/timestamp'
 </ruby>
 </configuration>
 </execution>
 </executions>
 <!— These are necessary due to an issue with
 JRuby's Maven distribution. -->
 <dependencies>
 <dependency>
 <groupId>backport-util-
concurrent</groupId>
 <artifactId>backport-util-
concurrent</artifactId>
 <version>3.0</version>
 </dependency>
 <dependency>
 <groupId>asm</groupId>
 <artifactId>asm-all</artifactId>
 <version>2.2.3</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

6.5.3. Discussion

It's also possible to execute a script from a file by using
the script configuration element instead of ruby:

<configuration>
 <script>src/main/scripts/touch_timestamp.rb</script>
</configuration>

As with Ant's JRuby support, this plugin uses the jruby.home system
property to set up the Ruby load path. And just as Ant supports
an ANT_OPTS environment variable to pass system properties, Maven
supports an environment variable named MAVEN_OPTS. On Windows, you
would run:

set MAVEN_OPTS=-Djruby.home="%JRUBY_HOME%"

On Linux or Mac OS X, you would use:

export MAVEN_OPTS=-Djruby.home="$JRUBY_HOME"

The default load path for scripts executed inside the Maven plugin will be
these paths, relative to the jruby.home system property:

• lib/ruby/site_ruby/1.8
• lib/ruby/site_ruby
• lib/ruby/1.8
• lib/ruby/1.8/java

It is possible to add additional entries to this list using
the libraryPaths configuration element:

<configuration>
 <script>src/main/scripts/touch_timestamp.rb</script>
 <libraryPaths>
 <libraryPath>${user.home}/ruby/lib</libraryPath>
 </libraryPaths>
</configuration>

One downside to this plugin is that the released version of this plugin at
the time of writing (1.0-beta-4) is written with an older version of JRuby,

version 0.9.9. You should check the plugin's website for the latest
version.

6.5.4. See Also

• JRuby Maven plugin website, http://mojo.codehaus.org/jruby-
maven-plugin/

• Apache Maven website, http://maven.apache.org/

6.6. Writing a Maven Plugin with JRuby

6.6.1. Problem

You are using Apache Maven as a build system and want to reuse some
Ruby script across different projects. A good example of this is to use the
RedCloth Ruby library for generating project documentation using the
Textile markup language.

6.6.2. Solution

Create a new Maven plugin project and add the dependencies discussed
in Section 6.5 to both the project and the maven-plugin-
plugin plugin. Example 6-8 contains a simple pom.xml project descriptor.

Example 6-8. Maven pom.xml file for a JRuby-based Maven
plugin
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.jrubycookbook</groupId>
 <artifactId>maven-textile-plugin</artifactId>
 <packaging>maven-plugin</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>Maven Textile Plugin</name>
 <description>
 Generates site documentation from Textile sources using
 RedCloth.
 </description>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>jruby-maven-plugin</artifactId>
 <version>1.0-beta-4</version>
 </dependency>
 <dependency>
 <groupId>backport-util-concurrent</groupId>
 <artifactId>backport-util-concurrent</artifactId>
 <version>3.0</version>
 </dependency>
 <dependency>
 <groupId>asm</groupId>
 <artifactId>asm-all</artifactId>
 <version>2.2.3</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-plugin-plugin</artifactId>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>jruby-maven-
plugin</artifactId>
 <version>1.0-beta-4</version>
 </dependency>
 <dependency>
 <groupId>backport-util-
concurrent</groupId>
 <artifactId>
 backport-util-concurrent
 </artifactId>
 <version>3.0</version>
 </dependency>
 <dependency>

 <groupId>asm</groupId>
 <artifactId>asm-all</artifactId>
 <version>2.2.3</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

Install the RedCloth RubyGem:

$ gem install RedCloth

Then create a Ruby class in the src/main/scripts directory that extends
the Mojo class provided by the jruby-maven-plugin plugin. As with
Maven plugins written in Java, the class is annotated with a goal name.
Also similar to Java-based plugins, the plugin can be parameterized. Since
Ruby is dynamically typed, it is necessary to explicitly define the
parameter type using a type attribute of the parameter annotation. Once
any parameters are defined, the plugin's execution logic goes in a method
named execute. Example 6-9 defines a goal named generate that
searches for Textile files and transforms them to HTML using RedCloth.

Example 6-9. Maven plugin written in Ruby
include Java

require 'rubygems'
gem 'RedCloth'
require 'redcloth'

Plugin that will transform all Textile-formatted files to HTML
@goal "generate"
class GenerateMojo < Mojo

 # @parameter type="java.io.File" default-
value="${basedir}/src/main/site/textile"
 def sourceDirectory;;end

 # @parameter type="java.io.File" default-
value="${basedir}/target/site"
 def outputDirectory;;end

 def execute
 $outputDirectory.mkdirs

 Dir.chdir $sourceDirectory.absolutePath
 Dir.glob("*.tx") do |entry|
 info "Opening #{entry}"
 open(entry) { |f| @contents = f.read }
 r = RedCloth.new @contents
 # get the filename without extension
 short_name = entry.slice(0, entry.length - 3)
 out = java.io.File.new($outputDirectory,
"#{short_name}.html").absolutePath
 info "Writing to #{out}"
 open(out, 'w') { |f|
 f.puts "<html><body>"
 f.puts r.to_html
 f.puts "</body></html>"
 }
 end

 end
end

run_mojo GenerateMojo

6.6.3. Discussion

In addition to the @goal annotation seen in Example 6-9, the JRuby
Maven plugin supports all of the same class-level annotations as are

supported for Java-based Maven plugins. You can use@phase to bind your
plugin to a particular phase in Maven's build lifecycle, @requiresProject
false to allow your plugin to be run without a Maven project, and so on.
A complete list of annotations can be found on the Maven website. One
feature that unfortunately does not work in the current release is
automated plugin documentation. With Java-based plugins, Maven is able
to use these same annotations to build documentation for each goal, but
this does not yet work for JRuby-based plugins.

As with the examples in Section 6.5, it's necessary to set
the jruby.home system property through the MAVEN_OPTS environment
variable. If you are using a nondefault RubyGem installation location, it is
also necessary to set the GEM_HOME environment variable.

Readers familiar with Maven plugins may note that the code in Example
6-9 is not a Maven report and will not actually be invoked as part of the
Maven site generation process. Since Maven report plugins have some
additional requirements around localization, adding the necessary code to
achieve this is an exercise left to the reader.

6.6.4. See Also

• The Maven Plugin Developer
Center, http://maven.apache.org/plugin-developers/index.html

• JRuby Maven Plugin website, http://mojo.codehaus.org/jruby-
maven-plugin/

6.7. Building Java Projects with Raven

6.7.1. Problem

You need to build a Java project and wish to write your build script using
Ruby rather than XML.

6.7.2. Solution

Use Raven, a build tool for Java project that is based on Ruby's Rake
tool. Raven is essentially an add-on to Rake that provides Rake with
additional Rake tasks to build Java projects. Raven is available as a
RubyGem, so to install it simply run:

$ gem install raven

To use Raven, create a file named Rakefile in the root of your project and
include all necessary tasks in this file. Example 6-10 contains the simplest
of Raven build scripts.

Example 6-10. Simple Raven build script
require 'raven'

javac 'compile'

This script would be executed by running:

$ rake compile

Or:

$ jruby -S rake compile

This will compile all the Java files in a directory named src/main/java,
following the Maven project convention (see upcoming sidebar). This
default can be easily overridden, as seen in Example 6-11.

Example 6-11. Changing the default source directory
require 'raven'

javac 'compile' do |t|
 t.build_path << "src/java"
end

6.7.3. Discussion

Because Raven is based on Rake, any existing Rake task can be used
within a Raven build. A good example of this is the clean task. Since
Rake includes a clean task, Raven doesn't need to provide one, as seen
in Example 6-12.

Example 6-12. Raven build with Rake tasks
require 'raven'
require 'rake/clean'

CLEAN.include('target')

javac 'compile'

Note that Raven actually doesn't require JRuby.

What's the Relationship Between Raven and Maven?

In short, not much. Raven is by no means a port of Maven to
Ruby. If anything, it is much more closely related to Ant than
Maven, especially in that Ant, Rake, and Raven all descend
from make. Unlike Maven (or Buildr, which is discussed in Section
6.11), Raven is a procedural build system.
The Rakefile describes a series of steps that need to be
performed to build your project. Maven is (at least in part)
a declarative build system where you provide metadata about
your project and Maven determines the steps that need to be
performed in order to build it.

Raven does follow Maven's directory naming conventions. By
default, Java source files are expected to be in src/main/java,
JUnit tests in src/test/java, compiled Java classes will be put
into target/classes, etc.

Raven also has the ability to import a local Maven repository and
wrap all of the JAR files in RubyGems. This can be done by
running:

$ jruby -S raven import

6.7.4. See Also

• Raven project website, http://raven.rubyforge.org/
• Rake documentation, http://docs.rubyrake.org/

6.8. Referencing Libraries with Raven

6.8.1. Problem

You are using Raven to build your Java project and depend upon other
libraries, such as those from Jakarta Commons.

6.8.2. Solution

Use the dependency Raven task to define a set of dependencies and then
reference the set from the tasks that need the dependencies. Example 6-
13 contains a Rakefile for a project that depends upon Jakarta Commons
Logging and Jakarta Commons HttpClient. The dependency on the
HttpClient library is restricted to version 3.1 by using the => operator.

Example 6-13. Rakefile with dependencies
1 require 'raven'
2
3 dependency 'compile_deps' do |t|
4 t.deps << ['commons-logging', {'commons-httpclient' =>
'3.1'}]
5 end
6
7 javac 'compile' => 'compile_deps'
8
9 javadoc 'jdoc' => 'compile_deps'

6.8.3. Discussion

When used in a task definition, as on lines 7 and 9 of Example 6-13,
the => operator establishes a dependency between tasks.

Raven uses the RubyGems packaging system to manage dependencies by
wrapping JAR files into a RubyGem. In order to avoid, in the words of the
Raven source code, polluting the regular local RubyGem repository,
defined by the GEM_HOME environment variable, Raven stores its
RubyGems in a .raven subdirectory of the user's home directory. As
discussed in the sidebar withinSection 6.7, it is possible to populate this
directory with the contents of a local Maven repository by running:

raven import

The Raven team makes a public gem repository available
at http://gems.rubyraven.org/ that contains wrapped versions of all of
the libraries in the central Maven repository
(http://repo1.maven.org/maven2/). It is possible to set up your own
private repository, as we'll see in the next recipe.

6.9. Hosting a Private Raven Repository

6.9.1. Problem

You are building a Java project with Raven and want to insulate your build
process from any external network problems.

6.9.2. Solution

Create a private Raven repository by importing content from a Maven
repository. This can be done with a few simple commands:

Change /home/raven below to whatever directory you want to use.
$ mkdir /home/raven
$ cd /home/raven
$ raven repository
$ raven server

This will import all artifacts from the central Maven repository and then
start a web server on port 2233. To reference this repository in your
Rakefile, add this line after the require statements:

set_sources(["http://localhost:2233"])

6.9.3. Discussion

The repository command used above has a few interesting options. First,
it is possible to restrict the import to a subset of the repository by passing
a list of project identifiers to the command. For example, to import only
Jakarta Commons HttpClient and JUnit, you would run:

$ raven repository commons-httpclient junit

It is also possible to import a different Maven repository using the -
m option. For example, to import JBoss's Maven repository, run:

$ raven –m http://repository.jboss.com/maven2/ repository

6.10. Running JUnit Tests with Raven

6.10.1. Problem

You are building your Java project with Raven and want to execute some
JUnit unit tests.

6.10.2. Solution

Place your unit tests in the src/test/java directory, create
a dependency task for any test dependencies, and then use
the junit Raven task as seen in Example 6-14. By default, Raven will
search for classes whose names start with Test, but in Example 6-14,
this default is overridden to include only those classes with
names ending with Test.

Example 6-14. Unit testing with Raven
require 'raven'

dependency 'compile_deps' do |t|
 t.deps << ['commons-logging', {'commons-httpclient' =>
'3.1'}]
end

dependency 'test_deps' => 'compile_deps' do |t|
 t.deps << {'junit' => '3.8.2'}
end

javac 'compile' => 'compile_deps'

junit 'test' => ['compile', 'test_deps'] do |t|
 t.test_classes << "**/*Test.java"
end

You will see the test results on the console. If the tests pass, you'll see an
OK message:

$ rake test
(in /home/justin/raven-sample1)
...
Running test org.jrubycookbook.SomeTest
.

Time: 0

OK (1 test)

A test failure will include the stack trace:

$ rake test
(in /home/justin/raven-sample1)
...
Running test org.jrubycookbook.SomeTest
.F
Time: 0
There was 1 failure:
1)
testTest(org.jrubycookbook.SomeTest)junit.framework.AssertionFail
edError
 at org.jrubycookbook.SomeTest.testTest(SomeTest.java:8)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native
Method)
 at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorI
mpl.
java:39)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodA
cces
sorImpl.java:25)

FAILURES!!!
Tests run: 1, Failures: 1, Errors: 0

There were failures!

6.10.3. See Also

• JUnit website, http://www.junit.org

6.11. Building Java Projects with Buildr

6.11.1. Problem

You need to build a Java project and wish to define your project's build
using Ruby rather than XML.

6.11.2. Solution

Use Buildr, a declarative build system for Java code written in Ruby.
Buildr is available as a RubyGem; installation can be done by running:

$ gem install buildr

Buildr uses a file named buildfile[12] to define a project. A
minimal buildfile such as the one seen in Example 6-15 defines the
project's name (line 11), the project's group (line 13), a description of the
project (line 10), the current version of the project (line 12), and the
packaging type of the project (line 14).

[12] Buildr will also search for a file named Buildfile.

Example 6-15. Minimal Buildr buildfile
10 desc "The Chapter 6 buildr project"
11 define "ch06-buildr" do
12 project.version = "1.0"
13 project.group = "org.jrubycookbook"
14 package(:jar)
15 end

Based on this buildfile, Buildr will assume that this is a project containing
Java sources in a directory named src/main/java and JUnit test cases in a
directory named src/test/java. The generated JAR file will be
named ch06-buildr-1.0.jar. To build the project (which for Buildr means
compiling the source code and running the tests), simply run:

$ buildr

To build the JAR file, run:

$ buildr package

These commands can be run in the project's root directory or any
subdirectory.

6.11.3. Discussion

If you have an existing Java project, especially one that uses Maven as its
build system, Buildr can automatically create this file for you.
Run buildr from the project's root directory and select the appropriate
option:

$ buildr
To use Buildr you need a buildfile. Do you want me to create
one?:
1. From maven2 pom file
2. From directory structure
3. Skip
? 1
Created /home/edelsonj/kramer/buildfile

When creating a buildfile from an existing Maven project's pom.xml file,
Buildr is able to extract all of the information seen in Example 6-15 as
well as all of the project's dependencies. The importer can be a little over-
enthusiastic when it comes to dependencies, so always check the
resulting buildfile. If your Maven project includes submodules, the
generated buildfile will include information about those submodules.

When creating a buildfile from a directory structure, Buildr will only
determine the project's name (using the current directory name) and the
packaging type. Example 6-16 contains a buildfilegenerated in this
manner.

Example 6-16. Generated buildfile
Generated by Buildr 1.3.1.1, change to your liking
Version number for this release
VERSION_NUMBER = "1.0.0"
Version number for the next release
NEXT_VERSION = "1.0.1"
Group identifier for your projects
GROUP = "buildr-temp"
COPYRIGHT = ""

Specify Maven 2.0 remote repositories here, like this:
repositories.remote << "http://www.ibiblio.org/maven2/"

desc "The Buildr-test project"
define "buildr-test" do

 project.version = VERSION_NUMBER
 project.group = GROUP
 manifest["Implementation-Vendor"] = COPYRIGHT
 compile.with # Add classpath dependencies
 package(:jar)
end

Comparing Raven and Buildr

As discussed in Section 6.7, there is a substantial architectural
difference between Raven and Buildr, which parallels the
difference between Ant and Maven. Raven is a procedural build
system—your Rakefile explicitly defines the tasks available to
build your project. Buildr, on the other hand, is a declarative build
system—your buildfileprovides information about your project,
which Buildr uses to determine how to build your project.
Comparing Example 6-15 with some of the sample Raven build
files from recipes earlier in this chapter illustrates this difference—
every task in the Raven builds needs to be declared explicitly
(even if those tasks are set up with intelligent defaults) whereas
the minimal buildfile in Example 6-15 can be used to compile, run
tests, produce javadoc, etc.

To see the full list of available Buildr tasks, run:

$ buildr help:tasks

6.11.4. See Also

• Buildr website, http://incubator.apache.org/buildr/

6.12. Referencing Libraries with Buildr

6.12.1. Problem

You are using Buildr to build your Java project and depend upon other
libraries, such as those from Jakarta Commons.

6.12.2. Solution

Pass the list of dependencies to the compile.with method. Each
dependency is defined by four attributes: group, name, packaging type,
and version. For example, if your code depends upon Apache HttpClient
and Jakarta Commons Logging, you would specify:

compile.with "org.apache.httpcomponents:httpclient:jar:4.0-
alpha4",
 "org.apache.httpcomponents:httpcore:jar:4.0-beta1",
 "commons-logging:commons-logging:jar:1.1.1"

Buildr will look for dependencies in your local Maven repository (in
the .m2/repository subdirectory of your home directory). If it cannot find
the dependencies there, it will attempt to download them from a remote
repository. As a result, it is also necessary to add this line to
your buildfile:

repositories.remote << "http://repo1.maven.org/maven2/"

6.12.3. Discussion

Buildr's dependency mechanism is entirely based upon the Maven
repository structure. Unlike Raven, which uses a RubyGems-based
dependency mechanism, any library in an existing Maven repository can
be used as part of a Buildr build. This includes the libraries in
the central repository (at http://repo1.maven.org/maven2/), as well as
other public Maven repositories hosted by Sun
(http://download.java.net/maven/2/) and JBoss
(http://repository.jboss.com/maven2/), among others. Individual

developers and software development organizations can also host private
Maven repositories.

Although Buildr will sometimes correctly resolve dependencies
transitively, this functionality does not always work. Expect support for
transitive dependencies to improve in upcoming versions.

6.12.4. See Also

• Introduction to Maven
Repositories, http://maven.apache.org/guides/introduction/introduc
tion-to-repositories.html

6.13. Building with Rake Inside Hudson

6.13.1. Problem

You want to build a software project that uses Rake as its build system in
a continuous manner. This could be on a schedule (i.e., every day at
noon) or upon every submission to a version control system like
Subversion.

6.13.2. Solution

Use a continuous integration server that supports Rake, such as
Hudson. Once the Hudson Rake plugin is installed, you can simply add a
Rake execution to your job, as in Figure 6-1.

Figure 6-1. Rake build step in Hudson job configuration

6.13.3. Discussion

To install the Rake plugin in Hudson, use the Hudson Plugin Manager,
which can be found under the Manage Hudson menu. Inside the Plugin
Manager, select the Available tab to see the list of available plugins.
Check the box next to the Rake plugin listing (Figure 6-2) and click the
Install button. After the plugin has been installed, you will need to restart
Hudson.

Figure 6-2. Rake plugin entry in the Plugin Manager

Hudson's Rake plugin allows you to configure multiple Ruby runtimes.
This allows you to have some projects built against MRI and some
projects built against JRuby within the same continuous integration
server. This is done through the System Configuration screen, seen
in Figure 6-3.

Figure 6-3. Multiple Ruby runtimes in Hudson

6.13.4. See Also

• Hudson website, https://hudson.dev.java.net/
• http://hudson.gotdns.com/wiki/display/HUDSON/Rake+plugin,

Hudson Rake plugin

6.14. Adding Ruby Script to a Hudson Job

6.14.1. Problem

You have some additional build steps that need to be done as part of your
build process when executed through the Hudson continuous integration
server.

6.14.2. Solution

Use the Hudson Ruby plugin. This plugin allows you to add arbitrary Ruby
script as a build step in your job. Figure 6-4 shows a job with two build
steps. The first executes the Ant target namedwar and the second runs
some Ruby code that copies all WAR files into a temporary directory.

Figure 6-4. Using the Hudson Ruby plugin

6.14.3. Discussion

As with the Rake plugin discussed in Section 6.13, the Ruby plugin can be
downloaded and installed through Hudson's Plugin Manager. Unlike the
Rake plugin, the Ruby plugin does not support multiple runtimes. It will
only execute the ruby command on your PATH. Thus, if want to use this
plugin with JRuby, it will be necessary to create a copy (or symbolic link)
of the jruby script included with the JRuby distribution named ruby and
ensure that this script is on your PATH before any other Ruby. The plugin

does make debugging simple by outputting the Ruby version number in
the build's console output, like this:

[workspace] $ ruby -v /tmp/hudson35926.rb
ruby 1.8.5 (2007-09-24 patchlevel 114) [i386-linux]

Hudson makes a number of environment variables available to Ruby
scripts executed in this manner. These include the name of the job
(JOB_NAME), the build number (BUILD_NUMBER), and the Hudson URL
(HUDSON_URL). A full listing is available through the Hudson web interface.

6.14.4. See Also

• http://hudson.gotdns.com/wiki/display/HUDSON/Ruby+plugin,
Hudson Ruby plugin

Chapter 7. Testing

Introduction

Unit Testing Java Code with Test/Unit

Unit Testing Java Code with dust

Unit Testing Java Code with Expectations

Testing Java Code with RSpec

Creating Mock Objects with Mocha

Modifying the JtestR Classpath

Grouping Tests for JtestR

Using the JtestR Command-Line Options

Running JtestR with Ant

Running JtestR with Maven

Improving JtestR Performance

7.1. Introduction

The focus of this chapter is the topic of automated testing, specifically,
testing Java code with Ruby. There are several key advantages of using a
dynamic language, such as Ruby, to test code written in a statically typed
language, such as Java:

• Automated test cases tend to require a lot of bootstrapping code.
Using a domain-specific language (DSL) such as those provided by
the Ruby frameworks like dust and Expectations can cut down on
this repetitive code.

• Dynamic languages make it very easy to create mock objects.
JRuby, for example, allows you to directly instantiate Java
interfaces.

• Open classes allow code to be modified at runtime to facilitate
testing.

There are a variety of testing frameworks available in Ruby, the most
popular of which are wrapped into a JRuby-based project called

JtestR. JtestR is an open source project that Ola Bini and Anda
Abramovici, developers at ThoughtWorks, started in 2008 with the
purpose of making it easy to test Java code with a variety of Ruby testing
frameworks. As of the current version 0.3, JtestR includes support for:

• Test/Unit
• RSpec
• Expectations
• dust
• Mocha

In addition, JtestR supports the Java testing frameworks JUnit and
TestNG, making it a "one-stop shop" for testing frameworks.

JtestR is available for download from http://jtestr.codehaus.org.

7.2. Unit Testing Java Code with Test/Unit

7.2.1. Problem

You want to test your Java code using a more concise syntax than is
available from Java testing frameworks such as JUnit and TestNG, but
with a minimal learning curve for developers familiar with JUnit.

7.2.2. Solution

Use JtestR's support for the Ruby testing framework Test/Unit. Test/Unit
uses similar semantics to JUnit:[13] test cases extend a specific test case
class and test methods follow a naming convention. In the case of
Test/Unit, test cases must extend Test::Unit::TestCase and test
methods are prefixed with test_. Example 7-1 shows a simple Test/Unit
class that tests the size()method of java.util.ArrayList.

[13] That is, JUnit prior to the addition of annotation support.

Example 7-1. Simple Test/Unit
class TestArrayList < Test::Unit::TestCase

 def test_that_size_method_works
 list = java.util.ArrayList.new
 assert_equal(0, list.size)
 list << 'first'
 list << 'second'
 assert_equal(2, list.size)
 end

end

7.2.3. Discussion

Like JUnit, Test/Unit supports the use of a setup method (named setup)
into which you can extract code that needs to be executed prior to each
test. For example, if a second test method was added to Example 7-1, it
would make sense to put the creation of the new ArrayList instance into
this setup method, as seen in Example 7-2.

Example 7-2. Test/Unit class with setup method
class TestArrayList < Test::Unit::TestCase

 def setup
 @list = java.util.ArrayList.new
 end

 def test_that_size_method_works
 assert_equal(0, @list.size)
 @list << 'first'
 @list << 'second'
 assert_equal(2, @list.size)
 end

 def test_that_empty_works
 assert(@list.empty)
 @list << 'first'
 @list << 'second'
 assert(!@list.empty)
 end

end

Test/Unit also supports the use of a method named teardown for cleanup
after each test is run.

Test/Unit tests can be run without any additional configuration with
JtestR. Simply place the test class files in a directory named test/unit and
start JtestR's command-line test runner. This class, along with all of
JtestR's dependencies can be found in the JtestR JAR file, available from
the JtestR website. You can run the JtestR command-line test runner with
the command:

$ java –cp ~/jtestr-0.3.jar org.jtestr.JtestRRunner

To reduce the amount of typing necessary, you may want to add the
JtestR JAR file to your classpath:

$ export CLASSPATH=~/jtestr-0.3.jar:$CLASSPATH

When you run JtestR with the default options, your test cases will be
executed and you will see the results on the console:

$ java org.jtestr.JtestRRunner
Unit TestUnit: 2 tests, 0 failures, 0 errors

If the tests do not pass, you will see the test methods that are in failure.
If java.util.ArrayList did not perform correctly, you would see
something like the following:

Failure:
test_that_empty_works(TestArrayList)
...
<false> is not true.

Failure:
test_that_size_method_works(TestArrayList)
...
<2> expected but was
<3>.

Unit TestUnit: 2 tests, 2 failures, 0 errors

Exception in thread "main" java.lang.RuntimeException: Tests
failed
 at org.jtestr.JtestRRunner.execute(JtestRRunner.java:117)
 at org.jtestr.JtestRRunner.main(JtestRRunner.java:163)

7.2.4. See Also

• Test/Unit documentation, http://www.ruby-
doc.org/stdlib/libdoc/test/unit/rdoc/

7.3. Unit Testing Java Code with dust

7.3.1. Problem

You want to test your Java code using a more concise syntax than is
available from Java testing frameworks such as JUnit and TestNG, and
find Test/Unit to be too verbose.

7.3.2. Solution

Use Jay Fields's dust library, support for which is included with JtestR.
dust provides an alternate syntax for writing tests that takes advantage
of Ruby language features to create a domain-specific language (DSL) for
testing. Example 7-3 contains the dust version of the tests in Example 7-
2.

Example 7-3. Unit testing with dust
unit_tests do
 test "that size method works" do
 @list = java.util.ArrayList.new
 assert_equal(0, @list.size)
 @list << 'first'
 @list << 'second'
 assert_equal(2, @list.size)
 end

 test "that empty method works" do
 @list = java.util.ArrayList.new
 assert @list.empty
 @list << 'first'
 @list << 'second'
 assert !@list.empty
 end
end

As with Test/Unit tests, dust tests can be run through JtestR with no
special configuration.

7.3.3. Discussion

Under the covers, dust converts the body of the block passed to
the unit_tests method into a Ruby class in the Units module. The name
is derived from the filename. If Example 7-3 was contained in a file
named lists_test.rb, the generated class would be Units::ListsTests.
Each call to the test method is converted to a method in this generated
class. The name of the method is derived from the name given. The
generated class for Example 7-3 includes methods
named test_that_size_method_works and test_that_empty_method_wo
rks.

In addition to the unit_tests method seen in Example 7-3, dust also
supports a functional_tests method. The only difference between the
two methods is that tests defined within thefunctional_tests method
are placed in a class in the Functionals module.

Under the default JtestR configuration, these generated class and method
names are only seen when a test fails. For example:

Failure:
test_that_size_method_works(Units::ListTests)
...
<2> expected but was
<3>.

NOTE

Unlike Test/Unit, dust does not support setup or teardown methods.

7.3.4. See Also

• dust documentation, http://dust.rubyforge.org
• Jay Fields's introduction to

dust, http://blog.jayfields.com/2007/08/rubygems-dust.html

7.4. Unit Testing Java Code with
Expectations

7.4.1. Problem

You want to test your Java code using a more concise syntax than is
available from Java testing frameworks such as JUnit and TestNG and
want to ensure you follow some testing best practices, specifically limiting
the number of assertions per test to one.

7.4.2. Solution

Use JtestR's support for the Expectations framework. Like dust,
Expectations provides a domain-specific language (DSL) for writing tests.
Unlike dust, Expectations does not use the standard Test/Unit assertion
methods. Instead, each test makes an assertion about the return value of
the test. Example 7-4 contains the same tests seen in prior recipes using
Expectations.

Example 7-4. Unit testing with Expectations
Expectations do
 expect 0 do
 list = java.util.ArrayList.new
 list.size
 end

 expect 2 do
 list = java.util.ArrayList.new
 list << 'first'
 list << 'second'
 list.size
 end

 expect true do
 list = java.util.ArrayList.new
 list.empty
 end

 expect false do
 list = java.util.ArrayList.new
 list << 'first'
 list << 'second'
 list.empty
 end
end

JtestR's support for Expectations is not automatic; it must be enabled
through configuration. To do so, first determine the naming convention
you will use for Expectations-based tests. Then create a file
named jtestr_config.rb in the test directory of your project. This file
should contain a line such as the following:

expectation Dir["test/expectations/*.rb"]

In this case, we declare that any file in the test/expectations directory is
meant to be run with Expectations. You could also use a filename-based
naming convention:

expectation Dir["test/**/*_expect.rb"]

Or even declare individual files:

expectation Dir["test/unit/list_tests_expect.rb"]

7.4.3. Discussion

The output of Expectations is different than that for Test/Unit or dust
tests, but the information conveyed is similar:

Expectations .F.F
Finished in 0.00206 seconds

Failure: 2 failed, 0 errors, 2 fulfilled

--Failures--
file </home/justin/list-tests/test/expectations/test.rb>
line <7>
expected: <3> got: <2>

file </home/justin/list-tests/test/expectations/test.rb>
line <19>
expected: <true> got: <false>

7.4.4. See Also

• Expectations documentation, http://expectations.rubyforge.org

• Jay Fields's introduction to
Expectations, http://blog.jayfields.com/2007/12/ruby-expectation-
gem.html

7.5. Testing Java Code with RSpec

7.5.1. Problem

You want to write behavior-orientated tests for your Java code.

7.5.2. Solution

Use JtestR's support for the RSpec Behavior-Driven Development (BDD)
framework. RSpec is actually composed of two different frameworks for
writing tests: the Spec framework and the Story framework.

7.5.2.1. Spec framework

RSpec Spec tests describe the behavior of an object through a series of
assertions about the behavior of the object. These assertions are referred
to as examples. The Spec file in Example 7-5describes the behavior of
the java.util.HashSet class.

Example 7-5. RSpec Spec file for java.util.HashSet
import java.util.HashSet

describe HashSet do
 before(:each) do
 @set = HashSet.new
 end

 it "should be empty" do
 @set.should be_empty
 end

 it "should be of size one after an item is added" do
 @set << "foo"
 @set.size.should == 1
 end

 it "should be of size one after an item is added twice" do
 @set << "foo"
 @set << "foo"
 @set.size.should == 1
 end

 it "should be of size two after two items are added" do
 @set << "foo"
 @set << "bar"
 @set.size.should == 2
 end
end

By default, JtestR will execute files in any test directory whose filenames
end with _spec.rb as an RSpec Spec file. If you place the file
from Example 7-5 in the unit directory and execute the command-line
test runner, you will see output like this:

$ java org.jtestr.JtestRRunner
Unit Spec: 4 examples, 0 failures, 0 errors

7.5.2.2. Story framework

RSpec stories are generally composed of two files; one that describes the
behavior of an object in more-or-less plain text, referred to as the story,
and another that translates the behavior descriptions in the first file into
method calls on the actual object, referred to as the steps. For
example, Example 7-6 contains a story that describes the behavior of

the retains() method ofjava.util.ArrayList and Example 7-
7 contains the steps corresponding to this story. These files are
associated with the block at the end of the steps file.

Example 7-6. Story about java.util.ArrayList
Story: retain the content of one ArrayList in another
 I want to retain only the contents of one ArrayList in another
 To create the union of the two lists

 Scenario: there is no overlap
 Given my ArrayList is a new ArrayList
 And my other ArrayList is a new ArrayList
 And my ArrayList contains "one"
 And my ArrayList contains "two"
 And my other ArrayList contains "three"
 When I retain only the contents of my other ArrayList to my
ArrayList
 Then my ArrayList should be empty

 Scenario: there is some overlap
 Given my ArrayList is a new ArrayList
 And my other ArrayList is a new ArrayList
 And my ArrayList contains "one"
 And my ArrayList contains "two"
 And my ArrayList contains "three"
 And my other ArrayList contains "one"
 And my other ArrayList contains "two"
 When I retain only the contents of my other ArrayList to my
ArrayList
 Then my ArrayList should have a size of 2
 And my ArrayList should contain "one"
 And my ArrayList should contain "two"

Example 7-7. Steps for java.util.ArrayList story
import java.util.ArrayList

$lists = { }

steps_for(:arraylist) do
 Given('my $list_name is a new ArrayList') do |list_name|
 $lists[list_name] = ArrayList.new
 end
 Given('my $list_name contains "$object"') do |list_name,
object|
 $lists[list_name] << object
 end
 When('I retain only the contents of my $other_list_name to my
$list_name') do
 |other_list_name,list_name|
 $lists[list_name].retain_all($lists[other_list_name])
 end
 Then('my $list_name should have a size of $size') do
|list_name,size|
 $lists[list_name].size.should == size.to_i
 end
 Then('my $list_name should contain "$object"') do
|list_name,object|
 $lists[list_name].contains(object).should == true
 end
 Then('my $list_name should be empty') do |list_name|
 $lists[list_name].should be_empty
 end
end

with_steps_for(:arraylist) do
 run 'test/stories/arraylist.story'
end

To run RSpec stories with JtestR, simply place the story and steps files in
the stories subdirectory of the test directory. If you execute the
command-line test runner, you will see output like this:

$ java org.jtestr.JtestRRunner
Stories: 2 scenarios, 0 failures, 0 errors

7.5.3. Discussion

Both the Spec and Story frameworks benefit from enabling verbose
output. This can be done using command-line options (as described

in Section 7.8) or by creating a jtestr_config.rb file in thetest directory.
For the former, simply place this line in the configuration file:

output_level :VERBOSE

For example, when running the Story and Spec in the examples in this
recipe, the following is output:

$ java org.jtestr.JtestRRunner
should be empty(Java::JavaUtil::HashSet): .
should be of size one after an item is
added(Java::JavaUtil::HashSet): .
should be of size one after an item is added
twice(Java::JavaUtil::HashSet): .
should be of size two after two items are
added(Java::JavaUtil::HashSet): .
Unit Spec: 4 examples, 0 failures, 0 errors

there is no overlap(retain the content of one ArrayList in
another): .
there is some overlap(retain the content of one ArrayList in
another): .
Stories: 2 scenarios, 0 failures, 0 errors

For the Spec framework, JtestR supports a variety of output formats.
Most interesting is the HTML output, which allows you to create nice-
looking reports. To enable this, add the following line to
your jtestr_config.rb file:

rspec_formatter ["h", "spec_output.html"]

This will output the report to a file named spec_output.html. Figure 7-
1 shows a sample of this output.

Figure 7-1. Positive RSpec HTML output

If one of the examples fails, then your output will illustrate that, as
in Figure 7-2.

7.5.4. See Also

• RSpec website, http://rspec.info
• Introduction to BDD, http://dannorth.net/introducing-bdd
• Section 7.9"

Figure 7-2. Failed RSpec HTML output

7.6. Creating Mock Objects with Mocha

7.6.1. Problem

You want to test a Java class that has dependencies on other classes and
want to insulate your tests from changes in the behavior of those other
classes.

7.6.2. Solution

Use Mocha, a Ruby mocking and stubbing framework that is included with
JtestR. Mocha allows you to create instances of Java interfaces and
classes that exhibit a specific behavior. Mock objects can be used in any
type of test supported by JtestR. In Example 7-8, Mocha is used to create
a mock instance of java.util.Collection, which is passed to an
instance of java.util.ArrayList. This test validates the behavior of
the retainAll() method, specifically that it calls the contains() method
on the supplied Collection object the correct number of times.

Example 7-8. Unit test with dust and Mocha
unit_tests do
 test "that retainAll only calls contains" do
 list = java.util.ArrayList.new
 list << 'first'
 list << 'second'
 list << 'third'

 other = java.util.Collection.new
 other.expects(:contains).returns(true).times(3)

 list.retainAll(other)
 end
end

If another other method is called on the Collection object, an exception
will be thrown and the test will fail. For example,
if java.util.ArrayList implemented the retainsAll() method by
iterating through the collection, this error would be output:

#<Mock:0x4f4>.contains - expected calls: 1, actual calls: 0

Meaning that the mock expected the contains() method to be called, but
that did not occur.

Mocha can also specify the set of parameters to expect. This feature can
be used to enhance the test in Example 7-8 to test that ArrayList calls
the contains() methods in the proper sequence. This new test can be
seen in Example 7-9.

Example 7-9. Expecting a specific parameter
unit_tests do
 test "that retainAll calls contains once per item in the
list" do
 list = java.util.ArrayList.new
 list << 'first'
 list << 'second'
 list << 'third'

 other = java.util.Collection.new
 other.expects(:contains).with('first').returns(true)
 other.expects(:contains).with('second').returns(true)
 other.expects(:contains).with('third').returns(true)

 list.retainAll(other)
 end
end

7.6.3. Discussion

Mocha can create mock objects for Java classes as well as interfaces. To
mock a class, pass the class to the mock method. The only restriction on
mocking concrete classes is that you cannot mock final classes or
methods. For example, you cannot create a mock instance
of java.lang.String like this:

s = mock(java.lang.String)
s.expect(:length).return(5)

By default, when you create a mock for concrete classes, none of the
original behavior of the class is retained—any method that will be called
needs to be defined through the expects method. This behavior can be
altered by passing an array of method names to the mock method. This
functionality can lead to some confusing results, as seen in Example 7-10,
so use it with caution.

Example 7-10. Mocking a concrete class with preserved
methods
unit_tests do
 test "that using a Java class in JRuby string calls toString"
do
 preservedMethods = ['size',
JtestR::Mocha::METHODS_TO_LEAVE_ALONE].flatten

 list = mock(java.util.ArrayList, preservedMethods)

 list.expects(:add).times(2).returns(true)

 assert list.size == 0

 list.add "one"
 list.add "two"

 assert list.size == 0 # this is zero because the add
method is mocked
 end
end

7.6.4. See Also

• Mocha website, http://mocha.rubyforge.org/

7.7. Modifying the JtestR Classpath

7.7.1. Problem

You need to test classes that are not available on JtestR's default
classpath. By default, JtestR's classpath includes the following directories:

• build/classes
• build/test_classes
• target/classes
• target/test_classes

The default classpath also includes all JAR files in
the lib and build_lib directories (and any subdirectories).

7.7.2. Solution

Use the JtestR configuration file, by default named jtestr_config.rb and
placed in the test directory, to define the correct classpath. For example,

to set the classpath to be the bin directory, your configuration file would
contain:

classpath 'bin'

Multiple classpath definitions can be included in the configuration file.

7.7.3. Discussion

Using the classpath configuration option as described above will
overwrite the default classpath. To add the default entries back, put this
line to your configuration file:

add_common_classpath true

7.8. Grouping Tests for JtestR

7.8.1. Problem

You have a number of tests run through JtestR and want to group them.

7.8.2. Solution

Follow JtestR's directory naming conventions to group your tests. Within
the main test directory, JtestR will automatically group your tests based
on the directory they are in and will execute these groups in a particular
order:

1. Unit tests, those in the unit directory.
2. Functional tests, those in the functional directory.
3. Integration tests, those in the integration directory.
4. Other tests, those that are not in the unit, functional,

or integration directories.

The tests within each of these directory-based groups are then further
grouped based on the testing framework used. When you run the test
runner and have tests in multiple groups, you will see the test results
grouped:

Unit TestUnit: 4 test, 0 failures, 0 errors
Integration TestUnit: 2 test, 0 failures, 0 errors

Here we see that there were four tests in the unit directory and two tests
in the integration directory, all of which used Test/Unit.

7.8.3. Discussion

Although JtestR provides these automatic directory-based groups, there is
nothing actually different about the environment under which unit tests
run as compared with functional or integration tests.

7.9. Using the JtestR Command-Line Options

7.9.1. Problem

You want to customize the behavior of the JtestR command-line test
runner in some way, such as limiting the tests to be run or enabling
additional logging.

7.9.2. Solution

The JtestR command-line test runner has a number of options that can be
configured through command-line arguments. Unfortunately these
arguments must be passed in a specific sequence that you must adhere
to:

port

This argument, which defaults to 22332, allows you to connect the
test runner to a long-lived server process. This reduces the
amount of time required to perform a test run. This capability is
discussed in Section 7.9.

tests

This argument, which defaults to test, specifies the top-level
directory in which test group directories can be found.

logging

This argument specifies the logging level for JtestR. Possible
values are NONE, ERR, WARN, INFO, and DEBUG. The default is WARN.

configFile

This argument specifies the filename of the JtestR configuration
file.

outputLevel

This argument specifies how much information about each test is
output. Possible values are NONE, QUIET, NORMAL, VERBOSE,
and DEFAULT.

output

This argument provides JtestR with the output location. The
default is STDOUT.

groups

This argument defines the test group (or groups, in which case
they should be comma-delimited) that will be run. The default is
to run all tests discovered.

One typical use of these arguments is to output the name of each test as
it is run. As you can see from the output above, by default, JtestR only
outputs an individual test name if something goes wrong. By setting
the outputLevel argument to VERBOSE, you can have it output each test
name:

$ java org.jtestr.JtestRRunner 22332 test WARN jtsetr_config.rb
VERBOSE
test_that_empty_works(TestArrayList): .
test_that_size_method_works(TestArrayList): .
Unit TestUnit: 1 test, 0 failures, 0 errors

7.9.3. See Also

• Section 7.8"
• Section 7.12"

7.10. Running JtestR with Ant

7.10.1. Problem

You are building a project with Apache Ant and want to add tests written
in Ruby.

7.10.2. Solution

Use the Ant task provided with JtestR. This can be done by adding the
following task definition to your Ant build.xml file:

<taskdef name="jtestr"
 classname="org.jtestr.ant.JtestRAntRunner"
classpath="lib/jtestr-0.3.jar" />

Then call this task from inside an Ant target:

<target name="test">
 <jtestr />
</target>

This target can then be run from the command line:

$ ant test

7.10.3. Discussion

The JtestR Ant task supports all of the options used by the command-line
test runner (see Section 7.9). For example, to turn on verbose output,
your target would look like this:

<target name="test">
 <jtestr outputLevel="VERBOSE" />
</target>

In addition to the command-line options, there is a failOnError option
that defaults to true. Use this option if you want the Ant build to continue
even if the tests fail.

7.10.4. See Also

• Ant website, http://ant.apache.org/
• Section 7.7"
• Section 7.12"

7.11. Running JtestR with Maven

7.11.1. Problem

You are building a project with Maven and want to add tests written in
Ruby.

7.11.2. Solution

Use the Maven plugin provided with JtestR. This can be done by adding
the following plugin reference to your pom.xml file:

<plugin>
 <groupId>org.jtestr</groupId>
 <artifactId>jtestr</artifactId>
 <version>0.3</version>
 <executions>
 <execution>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Once this is in place, JtestR will automatically run whenever Maven's test
phase is executed.

Unfortunately, the latest release (0.3) of JtestR's Maven support has a
dependency on a nonstandard JRuby library. As a result, when you try to
use the plugin, you may see this error:

[ERROR] BUILD ERROR
[INFO] --

[INFO] Failed to resolve artifact.

Missing:

1) org.jruby:jruby-complete:jar:r6947

 Try downloading the file manually from the project website.
...

1 required artifact is missing.

for artifact:
 org.jtestr:jtestr:maven-plugin:0.3

To correct this, download the JAR
from http://dist.codehaus.org/jtestr/jruby-complete-r6947.jar and install
it into your local Maven repository. This can be done with these
commands:

$ wget http://dist.codehaus.org/jtestr/jruby-complete-r6947.jar
$ mvn install:install-file -Dfile=jruby-complete-r6947.jar -
Dversion=r6947 \
 -DartifactId=jruby-complete -Dpackaging=jar -DgroupId=org.jruby

7.11.3. Discussion

The JtestR Maven plugin supports all of the options used by the
command-line test runner (see Section 7.8). For example, to only run
unit tests, your plugin configuration would look like this:

<plugin>
 <groupId>org.jtestr</groupId>
 <artifactId>jtestr</artifactId>
 <version>0.3</version>
 <executions>
 <execution>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <groups>Unit TestUnit</groups>
 </configuration>
</plugin>

In addition to the command-line options, there is a failOnError option
that defaults to true. Use this option if you want the build to continue
even if the tests fail.

7.11.4. See Also

• Maven website, http://maven.apache.org/
• Section 7.7"
• Section 7.12"

7.12. Improving JtestR Performance

7.12.1. Problem

You are using JtestR and want to accelerate the execution times of your
unit tests.

7.12.2. Solution

Start a JtestR server in the background. This can be done with the
class org.jtestr.BackgroundServer:

$ java org.jtestr.BackgroundServer

By default, this will create a server on port 22332 with two runtimes,
meaning that two sets of tests can be run simultaneously. To change
these options, you can use command-line arguments: the port followed

by the number of runtimes. For example, to start five runtimes listening
on port 1000 you would run:

$ java org.jtestr.BackgroundServer 1000 5

Note that if you deviate from the default port, you will need to specify this
when you start the test runner. For example, with the command-line test
runner, this is the first option:

$ java org.jtestr.JtestRRunner 1000

7.12.3. Discussion

JtestR also includes classes that allow this test server to be run from
inside an Ant or Maven build. For Ant, this is done with
the JtestRAntServer class:

<target name="server">
 <taskdef name="jtestr-server"
 classname="org.jtestr.ant.JtestRAntServer"
classpath="lib/jtestr-0.3.jar" />
 <jtestr-server />
</target>

For Maven, if you have the JtestR Maven plugin configured in
your pom.xml, you can start the server by running this on the command
line:

$ mvn jtestr:server

7.12.4. See Also

• Section 7.10"
• Section 7.11"

Chapter 8. The JRuby Community

Introduction

Building JRuby from Source

Submitting an Issue Report for JRuby

Using the JRuby Mailing Lists

8.1. Introduction

This final chapter includes a series of recipes about how to participate in
the JRuby community. First, we will look at building JRuby from source,
something that most developers looking to peek under the covers of
JRuby will need to do at some point. We will also do a quick walkthrough
of JRuby's issue management system before finishing up with some
information about the ways in which JRuby community members
communicate with each other.

8.2. Building JRuby from Source

8.2.1. Problem

You need to build JRuby from the source files. This could be to take
advantage of some unreleased code or to create a JRuby JAR file for
distribution.

8.2.2. Solution

Download the source using a Subversion client:

$ svn co http://svn.codehaus.org/jruby/trunk/jruby/

JRuby is built using Apache Ant. There are a number of useful Ant targets
in the provided build script:

jar

Creates the jruby.jar file.

jar-complete

Creates the jruby-complete.jar file, which includes all of the
contents from jruby.jar and all of the Ruby standard libraries.

test

Runs the JRuby unit test suite.

dist-bin

Creates the JRuby binary distribution, i.e., the ZIP file that you
download from http://dist.codehaus.org/jruby/.

8.2.3. Discussion

The Subversion command above will check out the most recent version of
the source code (the trunk) from the JRuby repository. However, some
times it is necessary to check out the source core that corresponds to a
release. This can be done by checking out one of the tags
under http://svn.codehaus.org/jruby/tags/. For example, the source of
the JRuby 1.1 release can be found
athttp://svn.codehaus.org/jruby/tags/jruby-1_1/.

The Ant script also includes two targets that relate to JRuby's
compatibility with other Ruby interpreters. Although there is no formal
language specification for Ruby, a wide-ranging test suite has been
created as part of the Rubinius project. JRuby's Ant script includes the
following targets that relate to these specifications:

spec

Test all of the released specifications that JRuby is known to be
able to pass.

spec-all

Test all of the released Ruby specifications.

spec-show-excludes

List the specifications that JRuby is known to not be able to pass.

spec-latest

Test all of the available Ruby specifications that JRuby is known
to be able to pass, first obtaining the specification files from
source control.

spec-latest-all

Test all of the available Ruby specifications, first obtaining the
specification files from source control.

8.2.4. See Also

• Rubinius specs
documentation, http://rubinius.lighthouseapp.com/projects/5089/t
he-rubinius-specs

8.3. Submitting an Issue Report for JRuby

8.3.1. Problem

You have discovered a problem with JRuby or wish to request a feature to
be added in a future version.

8.3.2. Solution

JRuby uses Atlassian JIRA as its issue-tracking tool. You can view the list
of issues and create new issue reports by going
to http://jira.codehaus.org/browse/JRUBY. You can browse issues
anonymously, but must register and log in before creating a new issue or

commenting on an existing issue. Before creating an issue, please search
previously submitted issues to avoid duplication.

Assuming you want to create an issue and have logged in, click the
Create New Issue link in the main navigation to start the issue creation
process. Figure 8-1 shows the resulting dialog.

Figure 8-1. JIRA Create Issue dialog

Once you have selected the appropriate issue type and clicked Next, you
should populate the following form with as much information as possible.
This will assist JRuby developers in fully understanding the issue.

8.3.3. Discussion

At the bottom of the Issue Details form are two form fields, seen in Figure
8-2, that provide you with an opportunity to prioritize the handling of
your issue.

Figure 8-2. Testcase and Patch form fields

The first, "Testcase included," allows you to specify that you have
attached (or will attach) a test that demonstrates the issue in a
repeatable manner. The ability to reliably reproduce an issue is vital to
resolving it. The second, "Patch Submitted," allows you to specify that
you have attached (or will attach) a patch to the JRuby source that
resolves the issue. It is common to create a patch against the latest
source from version control, not the most recent release.

8.3.4. See Also

• Section 8.4"

8.4. Using the JRuby Mailing Lists

8.4.1. Problem

You need assistance with JRuby or a related tool.

8.4.2. Solution

Subscribe to the JRuby User mailing list. Subscriptions are managed
through Xircles, a project management system developed for use by the
Codehaus. You can see the available JRuby mailing lists by going
to http://xircles.codehaus.org/projects/jruby/lists. A searchable archive of
the mailing list is also available on this page.

8.4.3. Discussion

In addition to the mailing lists, JRuby core developers can frequently be
found in the #jruby IRC channel on irc.freenode.net. Conversations on
this channel are logged and an archive is available
through http://codingbitch.com/irc/channel?channel=%23jruby.

Appendix. Colophon

The animal on the cover of JRuby Cookbook is an African civet (Civettictis
civetta). Unlike the other members of the Viverridae family, which
resemble cats, the African civet is a dog-like animal with large
hindquarters and a low-head stance. Its coat is gray with black stripes
and spots, and it has a gray face, a white snout, and dark markings
around its eyes like a raccoon. Along its back runs a short mane of stiff
hairs that stand on end when the civet is alarmed. From head to tail, an
African civet is about 4 feet long, and it weighs 30 to 40 pounds.

The African civet ranges across sub-Saharan Africa in forests and
savannas. Solitary and nocturnal, it hides in caves or tree hollows during
the day. It eats anything edible, including insects, plants, and carrion,
and it preys on small animals such as hares and moongooses. Like all
civets, the African civet has glands that produce a scented fluid, which it
uses to mark its territory. This musk, known as civetone or simply civet,
is one of the oldest known ingredients in perfumes. Although it is still
used in the perfume industry today, the trade for civet musk has been on
the decline since synthetic musk was introduced in the mid-1900s.

The cover image is from Richard Lydekker's Royal Natural History. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSansMonoCondensed.

	JRuby Cookbook
	Copyright
	Preface
	Chapter 1. Getting Started
	1.1. Introduction
	1.1.1. Ruby
	Example 1-1. Introduction to Ruby blocks
	Example 1-2. Loop in Java
	Example 1-3. Loop in Ruby

	1.1.2. JRuby

	1.2. Installing JRuby
	1.2.1. Problem
	1.2.2. Solution
	1.2.3. Discussion
	1.2.3.1. Windows
	Figure 1-1. Extracted JRuby binary build
	Figure 1-2. Command-line jirb
	Figure 1-3. jirb GUI
	Figure 1-4. Windows Environment Variables
	1.2.3.2. Linux and Mac OS X
	Example 1-4. Example .profile file that adds JRuby to the PATH environment variable

	1.2.4. See Also

	1.3. Managing Packages with RubyGems
	1.3.1. Problem
	1.3.2. Solution
	1.3.3. Discussion
	1.3.4. See Also

	1.4. Using Both Ruby and JRuby
	1.4.1. Problem
	1.4.2. Solution
	1.4.3. Discussion
	1.4.4. See Also

	1.5. Sharing RubyGems
	1.5.1. Problem
	1.5.2. Solution
	1.5.3. Discussion

	1.6. Referencing Java Classes from Ruby
	1.6.1. Problem
	1.6.2. Solution
	Example 1-5. Creating a Java TreeMap from Ruby
	Example 1-6. Referencing a Java class with include_class
	Example 1-7. Creating an alias to avoid class name conflicts
	Example 1-8. Aliasing multiple classes with case
	Example 1-9. Wrapping a Java package with a Ruby module

	1.6.3. Discussion
	Example 1-10. Ruby to Java type conversion
	Example 1-11. Accessing static methods and variables

	1.7. Converting a Ruby Array into a Java Array
	1.7.1. Problem
	1.7.2. Solution
	1.7.3. Discussion

	1.8. Adding JAR Files to the Classpath
	1.8.1. Problem
	1.8.2. Solution
	1.8.3. Discussion
	Example 1-12. Creating a JAR file path dynamically

	1.9. Extending a Java Class in Ruby
	1.9.1. Problem
	1.9.2. Solution
	Example 1-13. Subclassing a Java class in Ruby

	1.9.3. Discussion
	Example 1-14. An abstract Java class
	Example 1-15. Ruby class that subclasses an abstract Java class

	1.10. Implementing a Java Interface in Ruby
	1.10.1. Problem
	1.10.2. Solution
	Example 1-16. Ruby implementation of a Java interface

	1.10.3. Discussion
	Example 1-17. Declaring Java interfaces in JRuby
	Example 1-18. JRuby working with Java interfaces—condensed version
	Example 1-19. Implementing a Java interface with a module
	Example 1-20. Using JRuby's impl method
	Example 1-21. Implementing a Java interface with a Ruby block

	1.10.4. See Also

	1.11. Opening Java Classes with JRuby
	1.11.1. Problem
	1.11.2. Solution
	1.11.3. Discussion
	Example 1-22. Adding a method to HashMap
	Example 1-23. A simple class to generate a HashMap object
	Example 1-24. Applying open class semantics to an instance created with Java code
	Example 1-25. Using extend_proxy to open all implementations of an interface

	1.11.4. See Also

	1.12. Setting Up Eclipse for JRuby Development
	1.12.1. Problem
	1.12.2. Solution
	1.12.3. Discussion
	1.12.3.1. RDT
	Figure 1-5. RDT Add RubyVM dialog
	1.12.3.2. DLTK
	Figure 1-6. DLTK "Add interpreter" dialog
	1.12.3.3. Running JRuby as a Java application
	Figure 1-7. Generic JRuby launch configuration
	Figure 1-8. Eclipse variable input dialog

	1.12.4. See Also

	1.13. Setting Up NetBeans for JRuby Development
	1.13.1. Problem
	1.13.2. Solution
	Figure 1-9. Installing the NetBeans Ruby plugin with the Plugins dialog

	1.13.3. Discussion
	Figure 1-10. NetBeans Ruby Platform Manager dialog
	Figure 1-11. NetBeans Ruby code completion
	Figure 1-12. NetBeans Fonts & Colors Options dialog

	1.13.4. See Also

	1.14. Platform Detection in a JRuby Application
	1.14.1. Problem
	1.14.2. Solution
	Example 1-26. JRuby platform detection

	1.14.3. Discussion

	Chapter 2. JRuby on Rails
	2.1. Introduction
	2.2. Installing and Setting Up Rails
	2.2.1. Problem
	2.2.2. Solution
	Figure 2-1. Ruby on Rails welcome screen

	2.2.3. Discussion
	Example 2-1. Example database.yml using JDBC
	Example 2-2. Example database.yml using activerecord-jdbcmysql-adapter

	2.2.4. See Also

	2.3. Packaging Rails As a Java EE Web Application
	2.3.1. Problem
	2.3.2. Solution
	Example 2-3. Example Warbler configuration file

	2.3.3. Discussion
	2.3.4. See Also

	2.4. Using an External Gem Repository witha Web Application
	2.5. Configuring the JRuby-Rack Servlet
	2.5.1. Problem
	2.5.2. Solution
	2.5.3. Discussion
	2.5.4. See Also

	2.6. Packaging Rails with a JNDI DataSource
	2.6.1. Problem
	2.6.2. Solution
	2.6.3. Discussion
	2.6.4. See Also

	2.7. Deploying Rails on Tomcat
	2.7.1. Problem
	2.7.2. Solution
	2.7.2.1. Windows
	2.7.2.2. Linux and OS X

	2.7.3. Discussion
	Example 2-5. Tomcat context.xml JNDI configuration

	2.7.4. See Also

	2.8. Deploying Rails on JBoss
	2.8.1. Problem
	2.8.2. Solution
	2.8.2.1. Windows
	2.8.2.2. Linux and OS X

	2.8.3. Discussion
	Example 2-6. Sample mysql-ds.xml JBoss DataSource configuration file
	Example 2-7. Sample JBoss deployment descriptor

	2.8.4. See Also

	2.9. Deploying Rails on Jetty
	2.9.1. Problem
	2.9.2. Solution
	2.9.3. Discussion
	Example 2-8. Sample jetty-env.xml file

	2.9.4. See Also

	2.10. Deploying Rails with jetty_rails
	2.10.1. Problem
	2.10.2. Solution
	2.10.3. Discussion
	Example 2-9. Sample jetty_rails.xml configuration file

	2.10.4. See Also

	2.11. Deploying Rails with Mongrel
	2.11.1. Problem
	2.11.2. Solution
	2.11.3. Discussion

	2.12. Deploying Rails on the GlassFish v2 Server
	2.12.1. Problem
	2.12.2. Solution
	Figure 2-2. Starting up the GlassFish server

	2.12.3. Discussion
	2.12.4. See Also

	2.13. Using the GlassFish v3 Gem
	2.13.1. Problem
	2.13.2. Solution
	2.13.3. Discussion
	2.13.4. See Also

	2.14. Using ActiveRecord Outside of Rails
	2.14.1. Problem
	2.14.2. Solution
	Example 2-10. Sample database.yml file
	Example 2-11. Loading a database.yml file and accessing the database

	2.14.3. Discussion
	Figure 2-3. jirb session using ActiveRecord and a JDBC connection

	2.15. Accessing Common Java Servlet Information
	2.15.1. Problem
	2.15.2. Solution
	Example 2-12. Accessing the Java servlet objects from a Rails controller

	2.15.3. Discussion
	2.15.4. See Also

	2.16. Configuring Session Storage
	2.16.1. Problem
	2.16.2. Solution
	2.16.3. Discussion
	2.16.4. See Also

	2.17. Controlling the Classes, Directories, and Other Files Packaged into a Rails WAR File
	2.17.1. Problem
	2.17.2. Solution
	2.17.3. Discussion
	2.17.4. See Also

	2.18. Changing the Name of the WAR File and the Staging Area
	2.18.1. Problem
	2.18.2. Solution
	2.18.3. See Also

	2.19. Deploying a Rails Application to the Root Context
	2.19.1. Problem
	2.19.2. Solution
	2.19.3. Discussion
	2.19.3.1. Tomcat
	Example 2-13. Changing the context path for a Tomcat deployment
	2.19.3.2. JBoss
	Example 2-14. Changing the context path for a JBoss deployment
	2.19.3.3. Jetty
	Example 2-15. Changing the context path for a Jetty deployment

	2.19.4. See Also

	2.20. Creating a Rails Application with Aptana Studio
	2.20.1. Problem
	2.20.2. Solution
	Figure 2-4. Aptana Studio: RadRails installation options
	Figure 2-5. RadRails Interface and Welcome screen

	2.20.3. Discussion
	Figure 2-6. Aptana Rails Shell

	2.20.4. See Also

	2.21. Accessing Static Files in Your Rails Java EE Application
	2.21.1. Problem
	2.21.2. Solution
	Example 2-16. Public directory detection code

	2.21.3. Discussion
	Example 2-17. Patching functions that serve static files

	2.21.4. See Also

	Chapter 3. Java Integration
	3.1. Introduction
	3.2. Executing Ruby from Java
	3.2.1. Problem
	3.2.2. Solution
	Example 3-1. Calling Ruby from Java

	3.2.3. Discussion
	Example 3-2. Using the current JRuby runtime
	Figure 3-1. Setting the jruby.home system property with Eclipse
	Example 3-3. Setting the jruby.home system property with Apache Ant

	3.2.4. See Also

	3.3. Invoking JRuby Through the Bean Scripting Framework
	3.3.1. Problem
	3.3.2. Solution
	Example 3-4. Invoking JRuby with BSF

	3.3.3. Discussion
	Example 3-5. Using declareBean()

	3.3.4. See Also

	3.4. Invoking JRuby Through Java Scripting Support
	3.4.1. Problem
	3.4.2. Solution
	Example 3-6. Invoking JRuby through javax.script.ScriptEngineManager

	3.4.3. Discussion
	Example 3-7. Creating a global variable with JSR 223

	3.4.4. See Also

	3.5. Logging from Ruby with Jakarta Commons Logging
	3.5.1. Problem
	3.5.2. Solution
	Example 3-8. Custom JRuby LogFactory bridge class
	Example 3-9. Using the JRubyLogFactory bridge class

	3.5.3. Discussion

	3.6. Using the Java Concurrency Utilities
	3.6.1. Problem
	3.6.2. Solution
	Example 3-10. Using a java.util.concurrent thread pool from Ruby

	3.6.3. Discussion
	Example 3-11. Using a ConcurrentHashMap like a Hash

	3.7. Creating JavaBean Style Accessor Methods
	3.7.1. Problem
	3.7.2. Solution
	Example 3-12. Helper module for JavaBean accessors

	3.7.3. Discussion

	3.8. Writing Consistent Code
	3.8.1. Problem
	3.8.2. Solution
	3.8.3. Discussion

	3.9. Transforming XML with TrAX
	3.9.1. Problem
	3.9.2. Solution
	Example 3-13. Using TrAX from JRuby

	3.9.3. Discussion
	Example 3-14. Implementing javax.xml.transform.ErrorListener in Ruby
	Example 3-15. Implementing javax.xml.transform.URIResolver in Ruby

	3.10. Creating a Pool of JRuby Runtimes
	3.10.1. Problem
	3.10.2. Solution
	Example 3-16. Creating a pool of JRuby runtimes

	3.10.3. Discussion
	3.10.4. See Also

	3.11. Performing Remote Management with JMX
	3.11.1. Problem
	3.11.2. Solution
	3.11.3. Discussion
	Example 3-17. Querying MBeans

	3.11.4. See Also

	3.12. Accessing Native Libraries with JRuby
	3.12.1. Problem
	3.12.2. Solution
	Example 3-18. JNA example showing Windows disk space

	3.12.3. Discussion
	3.12.4. See Also

	Chapter 4. Enterprise Java
	4.1. Introduction
	4.2. Creating a JNDI Context
	4.2.1. Problem
	4.2.2. Solution
	Example 4-1. Creating a custom JNDI Context

	4.2.3. Discussion
	4.2.4. See Also

	4.3. Sending JMS Messages
	4.3.1. Problem
	4.3.2. Solution
	Example 4-2. Sending a JMS message from Ruby

	4.3.3. Discussion
	Figure 4-1. JRuby message in the ActiveMQ web client

	4.4. Receiving JMS Messages
	4.4.1. Problem
	4.4.2. Solution
	Example 4-3. Receiving a JMS message

	4.4.3. Discussion

	4.5. Implementing an Enterprise JavaBean with JRuby
	4.5.1. Problem
	4.5.2. Solution
	Example 4-4. EJB local interface
	Example 4-5. JRuby EJB
	Example 4-6. Servlet accessing the JRuby EJB

	4.5.3. Discussion
	Example 4-7. JRuby EJB with web service annotations
	Figure 4-2. Testing the JRuby EJB web service

	4.5.4. See Also

	4.6. Defining Spring Beans in JRuby
	4.6.1. Problem
	4.6.2. Solution
	Example 4-8. Simple Spring JRuby bean definition
	Example 4-9. Simple interface for Spring bean
	Example 4-10. Ruby script referenced from Spring configuration

	4.6.3. Discussion
	Example 4-11. Using JRuby within a BeanFactory won't work
	Example 4-12. Using JRuby within an ApplicationContext
	Example 4-13. Ruby script that will confuse Spring

	4.6.4. See Also

	4.7. Creating Refreshable JRuby Spring Beans
	4.7.1. Problem
	4.7.2. Solution
	4.7.3. Discussion
	Example 4-14. Refreshable JRuby Spring bean called by a TimerTask
	Example 4-15. The SendDateTask class
	Example 4-16. Starting an ApplicationContext with Timer support

	4.8. Defining JRuby Spring Beans Inline
	4.8.1. Problem
	4.8.2. Solution
	Example 4-17. JRuby script inside an inline-script element

	4.9. Applying Spring-Aware Interfaces to JRuby Objects
	4.9.1. Problem
	4.9.2. Solution
	4.9.3. Discussion
	Example 4-18. Inline JRuby Spring bean that implements the BeanNameAware interface
	Example 4-19. Ruby module implementing Spring aware interfaces
	Example 4-20. Using a Spring module

	4.9.4. See Also

	4.10. Creating Spring MVC Controllers with JRuby
	4.10.1. Problem
	4.10.2. Solution
	Example 4-21. Spring configuration file with simple JRuby controller
	Example 4-22. JRuby class as a Spring MVC controller
	Example 4-23. Simple JSP template

	4.10.3. Discussion
	Example 4-24. Inline JRuby controller definition

	4.10.4. See Also

	4.11. Using Hibernate with JRuby
	4.11.1. Problem
	4.11.2. Solution
	Example 4-25. Accessing Hibernate Data Access Objects

	4.11.3. Discussion
	Example 4-26. Using blocks to define transactions

	4.12. Using the Java Persistence API with JRuby
	4.12.1. Problem
	4.12.2. Solution
	Example 4-27. Example JPA access from JRuby

	4.12.3. Discussion
	4.12.4. See Also

	4.13. Making SOAP Calls
	4.13.1. Problem
	4.13.2. Solution
	Example 4-28. Making a SOAP request with the Mule client module

	4.13.3. Discussion
	4.13.4. See Also

	4.14. Simplifying LDAP Access
	4.14.1. Problem
	4.14.2. Solution
	4.14.3. Discussion
	Example 4-29. Adding methods to the LdapCtx class

	Chapter 5. User Interface and Graphics
	5.1. Introduction
	5.2. Creating Swing Applications
	5.2.1. Problem
	5.2.2. Solution
	Example 5-1. Simple Swing UI

	5.2.3. Discussion
	Example 5-2. Changing the application's look and feel

	5.2.4. See Also

	5.3. Swing Event Handling
	5.3.1. Problem
	5.3.2. Solution
	Example 5-3. Events handled through block coercion

	5.3.3. Discussion
	Example 5-4. Events handled through an instance of a Java interface

	5.3.4. See Also

	5.4. Long-Running Tasks in Swing Applications
	5.4.1. Problem
	5.4.2. Solution
	Example 5-5. Using the SwingWorker for long-running jobs

	5.4.3. Discussion
	5.4.4. See Also

	5.5. Packaging Standalone Applications
	5.5.1. Problem
	5.5.2. Solution
	Example 5-6. Example Rawr configuration file
	5.5.2.1. Executable JAR
	5.5.2.2. Windows executable
	5.5.2.3. Mac OS X application

	5.5.3. Discussion
	5.5.4. See Also

	5.6. Packaging JRuby Web Start Applications
	5.6.1. Problem
	5.6.2. Solution
	Example 5-7. Web Start parameters in Rawr configuration file

	5.6.3. Discussion
	5.6.4. See Also

	5.7. Creating JRuby Applets
	5.7.1. Problem
	5.7.2. Solution
	Example 5-8. JRuby applet with content pane in a global variable
	Example 5-9. Applet tag for a JRuby applet
	Example 5-10. JavaScript applet deployment

	5.7.3. Discussion
	Example 5-11. JRuby applet, alternate implementation
	Example 5-12. JRuby applet using Java Scripting
	Example 5-13. Applet using Java Scripting and a global variable

	5.7.4. See Also

	5.8. Manipulating Images
	5.8.1. Problem
	5.8.2. Solution
	5.8.2.1. RMagick4J
	Example 5-14. Creating thumbnails with RMagick4J
	5.8.2.2. ImageVoodoo
	Example 5-15. Creating thumbnails with ImageVoodoo
	Example 5-16. ImageScience example
	Example 5-17. ImageVoodoo extended features

	5.8.3. Discussion
	Example 5-18. Java 2D API thumbnail generation

	5.8.4. See Also

	5.9. Creating SWT Applications
	5.9.1. Problem
	5.9.2. Solution
	Example 5-19. Simple JRuby SWT application

	5.9.3. Discussion
	Example 5-20. Writing an SWT application with Glimmer

	5.9.4. See Also

	5.10. Accessing the Native Desktop
	5.10.1. Problem
	5.10.2. Solution
	Example 5-21. Java Desktop API

	5.11. Accessing the System Tray
	5.11.1. Problem
	5.11.2. Solution
	5.11.2.1. Swing
	Example 5-22. A Java system tray application
	5.11.2.2. SWT
	Example 5-23. SWT system tray application

	5.11.3. See Also

	5.12. Swing Development with JRuby Domain-Specific Languages
	5.12.1. Problem
	5.12.2. Solution
	5.12.2.1. Swiby
	Example 5-24. Simple Swiby application
	Example 5-25. Defining Swiby styles
	5.12.2.2. Cheri::Swing
	Example 5-26. Simple Cheri::Swing application
	5.12.2.3. Profligacy
	Example 5-27. Profligacy search demo
	Example 5-28. Profligacy LEL demo
	Figure 5-1. LEL Search Demo user interface

	5.12.3. See Also

	5.13. Using the Monkeybars Framework for Swing Development
	5.13.1. Problem
	5.13.2. Solution
	Example 5-29. Java GUI class for use with Monkeybars
	Example 5-30. Monkeybars model file
	Example 5-31. Monkeybars view class
	Example 5-32. Monkeybars controller class
	Example 5-33. Monkeybars main execution file

	5.13.3. Discussion
	Example 5-34. UI component defined in JRuby
	Example 5-35. Monkeybars view class that uses a JRuby UI component

	5.13.4. See Also

	5.14. Creating Qt Applications with JRuby
	5.14.1. Problem
	5.14.2. Solution
	Example 5-36. Qt::JRuby application

	5.14.3. Discussion
	Example 5-37. Qt::JRuby experimental DSL

	5.14.4. See Also

	Chapter 6. Build Tools
	6.1. Introduction
	6.2. Adding Ruby Scripting to Ant Builds
	6.2.1. Problem
	6.2.2. Solution
	Example 6-1. Hello World from JRuby inside Ant

	6.2.3. Discussion
	Example 6-2. Defining JRuby dependencies inside the Ant file
	Example 6-3. Calling an Ant target from Ruby

	6.3. Using Ruby in Ant Conditions
	6.3.1. Problem
	6.3.2. Solution
	Example 6-4. Using scriptcondition

	6.3.3. Discussion
	Example 6-5. Combining scriptcondition with other Ant conditions

	6.4. Writing an Ant Task in Ruby
	6.4.1. Problem
	6.4.2. Solution
	Example 6-6. Using scriptdef to define a new Ant task

	6.5. Adding Ruby Scripting to Maven Builds
	6.5.1. Problem
	6.5.2. Solution
	Example 6-7. Using the JRuby Maven plugin

	6.5.3. Discussion
	6.5.4. See Also

	6.6. Writing a Maven Plugin with JRuby
	6.6.1. Problem
	6.6.2. Solution
	Example 6-8. Maven pom.xml file for a JRuby-based Maven plugin
	Example 6-9. Maven plugin written in Ruby

	6.6.3. Discussion
	6.6.4. See Also

	6.7. Building Java Projects with Raven
	6.7.1. Problem
	6.7.2. Solution
	Example 6-10. Simple Raven build script
	Example 6-11. Changing the default source directory

	6.7.3. Discussion
	Example 6-12. Raven build with Rake tasks

	6.7.4. See Also

	6.8. Referencing Libraries with Raven
	6.8.1. Problem
	6.8.2. Solution
	Example 6-13. Rakefile with dependencies

	6.8.3. Discussion

	6.9. Hosting a Private Raven Repository
	6.9.1. Problem
	6.9.2. Solution
	6.9.3. Discussion

	6.10. Running JUnit Tests with Raven
	6.10.1. Problem
	6.10.2. Solution
	Example 6-14. Unit testing with Raven

	6.10.3. See Also

	6.11. Building Java Projects with Buildr
	6.11.1. Problem
	6.11.2. Solution
	Example 6-15. Minimal Buildr buildfile

	6.11.3. Discussion
	Example 6-16. Generated buildfile

	6.11.4. See Also

	6.12. Referencing Libraries with Buildr
	6.12.1. Problem
	6.12.2. Solution
	6.12.3. Discussion
	6.12.4. See Also

	6.13. Building with Rake Inside Hudson
	6.13.1. Problem
	6.13.2. Solution
	Figure 6-1. Rake build step in Hudson job configuration

	6.13.3. Discussion
	Figure 6-2. Rake plugin entry in the Plugin Manager
	Figure 6-3. Multiple Ruby runtimes in Hudson

	6.13.4. See Also

	6.14. Adding Ruby Script to a Hudson Job
	6.14.1. Problem
	6.14.2. Solution
	Figure 6-4. Using the Hudson Ruby plugin

	6.14.3. Discussion
	6.14.4. See Also

	Chapter 7. Testing
	7.1. Introduction
	7.2. Unit Testing Java Code with Test/Unit
	7.2.1. Problem
	7.2.2. Solution
	Example 7-1. Simple Test/Unit

	7.2.3. Discussion
	Example 7-2. Test/Unit class with setup method

	7.2.4. See Also

	7.3. Unit Testing Java Code with dust
	7.3.1. Problem
	7.3.2. Solution
	Example 7-3. Unit testing with dust

	7.3.3. Discussion
	7.3.4. See Also

	7.4. Unit Testing Java Code with Expectations
	7.4.1. Problem
	7.4.2. Solution
	Example 7-4. Unit testing with Expectations

	7.4.3. Discussion
	7.4.4. See Also

	7.5. Testing Java Code with RSpec
	7.5.1. Problem
	7.5.2. Solution
	7.5.2.1. Spec framework
	Example 7-5. RSpec Spec file for java.util.HashSet
	7.5.2.2. Story framework
	Example 7-6. Story about java.util.ArrayList
	Example 7-7. Steps for java.util.ArrayList story

	7.5.3. Discussion
	Figure 7-1. Positive RSpec HTML output

	7.5.4. See Also
	Figure 7-2. Failed RSpec HTML output

	7.6. Creating Mock Objects with Mocha
	7.6.1. Problem
	7.6.2. Solution
	Example 7-8. Unit test with dust and Mocha
	Example 7-9. Expecting a specific parameter

	7.6.3. Discussion
	Example 7-10. Mocking a concrete class with preserved methods

	7.6.4. See Also

	7.7. Modifying the JtestR Classpath
	7.7.1. Problem
	7.7.2. Solution
	7.7.3. Discussion

	7.8. Grouping Tests for JtestR
	7.8.1. Problem
	7.8.2. Solution
	7.8.3. Discussion

	7.9. Using the JtestR Command-Line Options
	7.9.1. Problem
	7.9.2. Solution
	7.9.3. See Also

	7.10. Running JtestR with Ant
	7.10.1. Problem
	7.10.2. Solution
	7.10.3. Discussion
	7.10.4. See Also

	7.11. Running JtestR with Maven
	7.11.1. Problem
	7.11.2. Solution
	7.11.3. Discussion
	7.11.4. See Also

	7.12. Improving JtestR Performance
	7.12.1. Problem
	7.12.2. Solution
	7.12.3. Discussion
	7.12.4. See Also

	Chapter 8. The JRuby Community
	8.1. Introduction
	8.2. Building JRuby from Source
	8.2.1. Problem
	8.2.2. Solution
	8.2.3. Discussion
	8.2.4. See Also

	8.3. Submitting an Issue Report for JRuby
	8.3.1. Problem
	8.3.2. Solution
	Figure 8-1. JIRA Create Issue dialog

	8.3.3. Discussion
	Figure 8-2. Testcase and Patch form fields

	8.3.4. See Also

	8.4. Using the JRuby Mailing Lists
	8.4.1. Problem
	8.4.2. Solution
	8.4.3. Discussion

	Appendix. Colophon

